Доступ предоставлен для: Guest

HEAT TRANSFER MODIFICATION WITHIN THE POROUS LAYER OF A PARTIALLY FILLED PIPE AT HIGH REYNOLDS NUMBER INCLUDING DISPERSION EFFECTS

Том 23, Выпуск 11, 2020, pp. 1101-1121
DOI: 10.1615/JPorMedia.2020026212
Get accessGet access

Краткое описание

The present study deals with the fluid flow and heat transfer in a pipe partially filled with porous media at a high Reynolds number. In addition to turbulence effects in this situation, interstitial fluid mixing within the pores plays an important role, causing significant thermal dispersion. The aim of the present study is to evaluate and compare the effects of these phenomena on the heat transfer rate in a pipe partially filled with porous media at the core and over the wall. The parameters studied are Darcy number, solid/fluid conductivity ratio, Reynolds number, Prandtl number, and porous layer thickness. The results showed that dispersion effects increase with the increase of Darcy number, porous layer thickness, and Prandtl number. A similar trend is also observed for the variation of turbulence effects with these parameters except for Darcy number. It was also found that the heat transfer rate in a pipe partially filled with a porous layer over the wall is mainly affected by thermal dispersion and turbulence effects inside the porous media, while the Nusselt number is not affected by these phenomena when the porous media is inserted at the core.

ЛИТЕРАТУРА
  1. Alkam, M. and Al-Nimr, M., Transient Non-Darcian Forced Convection Flow in a Pipe Partially Filled with a Porous Material, Int. J. Heat Mass Transf, vol. 41, no. 2, pp. 347-356,1998. .

  2. Allouache, N. and Chikh, S., Numerical Modeling of Turbulent Flow in an Annular Heat Exchanger Partly Filled with a Porous Substrate, J. Porous Media, vol. 11, no. 7, pp. 617-632,2008. .

  3. Al-Nimr, M. and Alkam, M., Unsteady Non-Darcian Forced Convection Analysis in an Annulus Partially Filled with a Porous Material, ASME J. Heat Transf., vol. 119, no. 4, pp. 799-804,1997. .

  4. Al-Nimr, M. and Alkam, M., Unsteady Non-Darcian Fluid Flow in Parallel-Plates Channels Partially filled with Porous Materials, Heat Mass Transf., vol. 33, no. 4, pp. 315-318, 1998. .

  5. Amiri, A. and Vafai, K., Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incom-pressible Flow through Porous Media, Int. J. Heat Mass Transf., vol. 37, no. 6, pp. 939-954, 1994. .

  6. Amiri, A. and Vafai, K., Transient Analysis of Incompressible Flow through a Packed Bed, Int. J. Heat Mass Transf, vol. 41, no. 24, pp. 4259-4279, 1998. .

  7. Anuar, F.S., Malayeri, M.R., and Hooman, K., Particulate Fouling and Challenges of Metal Foam Heat Exchangers, Heat Transf. Eng., vol. 38, nos. 7-8, pp. 730-742, 2016. .

  8. Bejan, A., Convection Heat Transfer, Hoboken, New Jersey: John Wiley & Sons, 2013. .

  9. Bhatti, M. and Rashidi, M., Effects of Thermo-Diffusion and Thermal Radiation on Williamson Nanofluid over a Porous Shrinking/Stretching Sheet, J. Mol. Liq., vol. 221, pp. 567-573, 2016. .

  10. Burstrom, P.E., Frishfelds, V., Ljung, A.-L., and Marjavaara, B.D., Discrete and Continuous Modelling of Convective Heat Transport in a Thin Porous Layer of Mono Sized Spheres, Heat Mass Transf, vol. 53, no. 1, pp. 151-160,2017. .

  11. Chan, H.C., Huang, W.C., Leu, J.M., and Lai, C.J., Macroscopic Modeling of Turbulent Flow over a Porous Medium, Int. J. Heat Fluid Flow, vol. 28, no. 5, pp. 1157-1166, 2007. .

  12. Chandesris, M., D'Hueppe, A., Mathieu, B., Jamet, D., and Goyeau, B., Direct Numerical Simulation of Turbulent Heat Transfer in a Fluid-Porous Domain, Phys. Fluids, vol. 25, no. 12, p. 125110, 2013. .

  13. Choi, C.Y. and Waller, P.M., Momentum Transport Mechanism for Water Flow over Porous Media, J. Environ. Eng., vol. 123, no. 8, pp. 792-799,1997. .

  14. de Lemos, M.J., Turbulence in Porous Media: Modeling and Applications, Oxford, UK: Elsevier, 2012. .

  15. Ferziger, J.H., Peric, M., and Leonard, A., Computational Methods for Fluid Dynamics, New York: Springer-Verlag, 1997. .

  16. Guo, B., Yu, A., Wright, B., and Zulli, P., Simulation of Turbulent Flow in a Packed Bed, Chem. Eng. Technol., vol. 29, no. 5, pp. 596-603, 2006. .

  17. Huang, Z., Nakayama, A., Yang, K., Yang, C., and Liu, W., Enhancing Heat Transfer in the Core Flow by Using Porous Medium Insert in a Tube, Int. J. Heat Mass Transf., vol. 53, nos. 5-6, pp. 1164-1174,2010. .

  18. Jin, Y. and Kuznetsov, A., Turbulence Modeling for Flows in Wall Bounded Porous Media: An Analysis based on Direct Numerical Simulations, Phys. Fluids, vol. 29, no. 4, p. 045102, 2017. .

  19. Jouybari, N.F., Lundstrom, T.S., Hellstrom, J.G.I., Maerefat, M., and Nimvari, M.E., Numerical Computation of Macroscopic Turbulent Quantities in a Porous Medium: An Extension to a Macroscopic Turbulence Model, J. Porous Media, vol. 19, no. 6, pp. 497-513,2016. .

  20. Jouybari, N.F., Maerefat, M., Lundstrom, T.S., Nimvari, M.E., and Gholami, Z., A General Macroscopic Model for Turbulent Flow in Porous Media, ASME J. Fluids Eng., vol. 140, no. 1, p. 011201, 2018. .

  21. Jouybari, N.F., Maerefat, M., and Nimvari, M.E., A Macroscopic Turbulence Model for Reacting Flow in Porous Media, Transp. Porous Media, vol. 106, no. 2, pp. 355-381, 2015. .

  22. Khayamyan, S., Lundstrom, T.S., Gren, P., Lycksam, H., and Hellstrom, J.G.I., Transitional and Turbulent Flow in a Bed of Spheres as Measured with Stereoscopic Particle Image Velocimetry, Transp. Porous Media, vol. 117, no. 1, pp. 45-67, 2017. .

  23. Kim, D.S., Kim, W.S., and Kuznetsov, A., Analysis of Coupled Turbulent Flow and Solidification in the Wedge-Shaped Pool with Different Nozzles during Twin-Roll Strip Casting, Numer. Heat Transf. A: Appl., vol. 41, no. 1, pp. 1-17, 2002. .

  24. Kim, W.S., Kim, D.S., and Kuznetsov, A., Simulation of Coupled Turbulent Flow and Heat Transfer in the Wedge-Shaped Pool of a Twin-Roll Strip Casting Process, Int. J. Heat Mass Transf., vol. 43, no. 20, pp. 3811-3822, 2000. .

  25. Kuwahara, F. and Nakayama, A., Numerical Determination of Thermal Dispersion Coefficients Using a Periodic Porous Structure, ASMEJ. Heat Transf., vol. 121, no. 1, pp. 160-163,1999. .

  26. Kuwahara, F., Nakayama, A., andKoyama, H., A Numerical Study of Thermal Dispersion in Porous Media, ASMEJ. Heat Transf, vol. 118, no. 3, pp. 756-761, 1996. .

  27. Kuznetsov, A., Influence of Thermal Dispersion on Forced Convection in a Composite Parallel-Plate Channel, ZAMP, vol. 52, no. 1,pp. 135-150,2001. .

  28. Kuznetsov, A., Cheng, L., and Xiong, M., Effects of Thermal Dispersion and Turbulence in Forced Convection in a Composite Parallel-Plate Channel: Investigation of Constant Wall Heat Flux and Constant Wall Temperature Cases, Numer. Heat Transf. A: Appl., vol. 42, no. 4, pp. 365-383, 2002. .

  29. Kuznetsov, A. and Xiong, M., Numerical Simulation of the Effect of Thermal Dispersion on Forced Convection in a Circular Duct Partly Filled with a Brinkman-Forchheimer Porous Medium, Int. J. Numer. MethodH, vol. 10, no. 5, pp. 488-502, 2000. .

  30. Lage, J., de Lemos, M.J., and Nield, D., Modeling Turbulence in Porous Media, in Transport Phenomena in Porous Media II, D.B. Ingham and I. Pop, Eds., Oxford, UK: Pergamon, pp. 198-230, 2002. .

  31. Launder, B.E. and Spalding, D.B., The Numerical Computation of Turbulent Flows, Comput. Methods Appl. Mech. Eng., vol. 3, no. 2, pp. 269-289, 1974. .

  32. Nakayama, A. and Kuwahara, F., A Macroscopic Turbulence Model for Flow in a Porous Medium, ASMEJ. Fluid Eng., vol. 121, pp. 427-433, 1999. .

  33. Nakayama, A., Kuwahara, F., and Kodama, Y., An Equation for Thermal Dispersion Flux Transport and Its Mathematical Modelling for Heat and Fluid Flow in a Porous Medium, J. Fluid Mech., vol. 563, pp. 81-96, 2006. .

  34. Nield, D.A. and Bejan, A., Convection in Porous Media, New York: Springer-Verlag, 2005. .

  35. Nimvari, M., Maerefat, M., and El-Hossaini, M., Numerical Simulation of Turbulent Flow and Heat Transfer in a Channel Partially Filled with a Porous Media, Int. J. Therm. Sci., vol. 60, pp. 131-141, 2012. .

  36. Nimvari, M.E. and Jouybari, N.F., Investigation of Turbulence Effects within Porous Layer on the Thermal Performance of a Partially Filled Pipe, Int. J. Therm. Sci, vol. 118, pp. 374-385, 2017. .

  37. Ozgiimus, T., Mobedi, M., Ozkol, U., and Nakayama, A., Thermal Dispersion in Porous Media-A Review on the Experimental Studies for Packed Beds, Appl. Mech. Rev, vol. 65, no. 3, p. 031001, 2013. .

  38. Patankar, S., Numerical Heat Transfer and Fluid Flow, Boca Raton, Florida: CRC Press, 1980. .

  39. Pedras, M.H. and de Lemos, M.J., Macroscopic Turbulence Modeling for Incompressible Flow through Undeformable Porous Media, Int. J. Heat Mass Transf., vol. 44, no. 6, pp. 1081-1093, 2001. .

  40. Pedras, M.H. and de Lemos, M.J., Thermal Dispersion in Porous Media as a Function of the Solid-Fluid Conductivity Ratio, Int. J. Heat Mass Transf., vol. 51, no. 21, pp. 5359-5367,2008. .

  41. Prinos, P., Sofialidis, D., and Keramaris, E., Turbulent Flow over and within a Porous Bed, J. Hyd. Eng., vol. 129, no. 9, pp. 720-733,2003. .

  42. Roldan, M.I., Smirnova, O., Fend, T., Casas, J., and Zarza, E., Thermal Analysis and Design of a Volumetric Solar Absorber Depending on the Porosity, Renew. Energy, vol. 62, pp. 116-128, 2014. .

  43. Saedodin, S., Zamzamian, S., Nimvari, M.E., Wongwises, S., and Jouybari, H.J., Performance Evaluation of a Flat-Plate Solar Collector Filled with Porous Metal Foam: Experimental and Numerical Analysis, Energy Convers. Manage, vol. 153, no. 1, pp. 278-287, 2017. .

  44. Saito, M.B. and de Lemos, M.J., A Macroscopic Two-Energy Equation Model for Turbulent Flow and Heat Transfer in Highly Porous Media, Int. J. Heat Mass Transf., vol. 53, no. 11, pp. 2424-2433, 2010. .

  45. Sathe, M., Joshi, J., and Evans, G., Characterization of Turbulence in Rectangular Bubble Column, Chem. Eng. Sci., vol. 100, pp. 52-68, 2013. .

  46. Seguin, D., Montillet, A., and Comiti, J., Experimental Characterisation of Flow Regimes in Various Porous Media I: Limit of Laminar Flow Regime, Chem. Eng. Sci., vol. 53, no. 21, pp. 3751-3761, 1998a. .

  47. Seguin, D., Montillet, A., Comiti, J., and Huet, F., Experimental Characterization of Flow Regimes in Various Porous Media II: Transition to Turbulent Regime, Chem. Eng. Sci, vol. 53, no. 22, pp. 3897-3909,1998b. .

  48. Shaw, R.H. and Schumann, U., Large-Eddy Simulation of Turbulent Flow above and within a Forest, Boundary Layer Meteorol., vol. 61, nos. 1-2, pp. 47-64, 1992. .

  49. Sheikholeslami, M. and Bhatti, M., Active Method for Nanofluid Heat Transfer Enhancement by Means of EHD, Int. J. Heat Mass Transf., vol. 109, pp. 115-122, 2017a. .

  50. Sheikholeslami, M. and Bhatti, M., Forced Convection of Nanofluid in Presence of Constant Magnetic Field Considering Shape Effects of Nanoparticles, Int. J. Heat Mass Transf., vol. 111, pp. 1039-1049,2017b. .

  51. Targui, N. and Kahalerras, H., Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Pulsating Flow, Energy Convers. Manage, vol. 76, pp. 43-54, 2013. .

  52. Vafai, K., Handbook of Porous Media, New York: Taylor and Francis, 2015. .

  53. Vafai, K., Bejan, A., Minkowycz, W., and Khanafer, K., A Critical Synthesis of Pertinent Models for Turbulent Transport through Porous Media, in Handbook of Numerical Heat Transfer, W.J. Minkowycz, E.M. Sparrow, and J.Y. Murthy, Eds., Hoboken, New Jersey: John Wiley and Sons Inc., pp. 389-416, 2006. .

  54. Vafai, K. and Kim, S.J., Analysis of Surface Enhancement by a Porous Substrate, ASME J. Heat Transf., vol. 112, no. 3, pp. 700-706, 1990. .

  55. Wakao, N. andKagei, S., Heat and Mass Transfer in Packed Beds, New York: Taylor & Francis, 1982. .

  56. Wu, Z., Caliot, C., Flamant, G., and Wang, Z., Coupled Radiation and Flow Modeling in Ceramic Foam Volumetric Solar Air Receivers, Sol. Energy, vol. 85, no. 9, pp. 2374-2385, 2011. .

  57. Yang, Y.T. and Hwang, M.L., Numerical Simulation of Turbulent Fluid Flow and Heat Transfer Characteristics in Heat Exchangers Fitted with Porous Media, Int. J. Heat Mass Transf., vol. 52, no. 13, pp. 2956-2965, 2009. .

Статьи, принятые к публикации

Effects of Momentum Slip and Convective Boundary Condition on a Forced Convection in a Channel Filled with Bidisperse Porous Medium (BDPM) Vanengmawia PC, Surender Ontela ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM Pushap Sharma, Deepak Bains, G. C. Rana Effect of Microstructures on Mass Transfer inside a Hierarchically-structured Porous Catalyst Masood Moghaddam, Abbas Abbassi, Jafar Ghazanfarian Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk Priya Bartwal, Himanshu Upreti, Alok Kumar Pandey Numerical Simulation of 3D Darcy-Forchheimer Hybrid Nanofluid Flow with Heat Source/Sink and Partial Slip Effect across a Spinning Disc Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng Application of Artificial Neural Network for Modeling of Motile Microorganism-Enhanced MHD Tangent Hyperbolic Nanofluid across a vertical Slender Stretching Surface Bilal Ali, Shengjun Liu, Hongjuan Liu Estimating the Spreading Rates of Hazardous Materials on Unmodified Cellulose Filter Paper: Implications on Risk Assessment of Transporting Hazardous Materials Heshani Manaweera Wickramage, Pan Lu, Peter Oduor, Jianbang Du ELASTIC INTERACTIONS BETWEEN EQUILIBRIUM PORES/HOLES IN POROUS MEDIA UNDER REMOTE STRESS Kostas Davanas Gravity modulation and its impact on weakly nonlinear bio-thermal convection in a porous layer under rotation: a Ginzburg-Landau model approach Michael Kopp, Vladimir Yanovsky Pore structure and permeability behavior of porous media under in-situ stress and pore pressure: Discrete element method simulation on digital core Jun Yao, Chunqi Wang, Xiaoyu Wang, Zhaoqin Huang, Fugui Liu, Quan Xu, Yongfei Yang Influence of Lorentz forces on forced convection of Nanofluid in a porous lid driven enclosure Yi Man, Mostafa Barzegar Gerdroodbary SUTTERBY NANOFLUID FLOW WITH MICROORGANISMS AROUND A CURVED EXPANDING SURFACE THROUGH A POROUS MEDIUM: THERMAL DIFFUSION AND DIFFUSION THERMO IMPACTS galal Moatimid, Mona Mohamed, Khaled Elagamy CHARACTERISTICS OF FLOW REGIMES IN SPIRAL PACKED BEDS WITH SPHERES Mustafa Yasin Gökaslan, Mustafa Özdemir, Lütfullah Kuddusi Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari A nanofluid couple stress flow due to porous stretching and shrinking sheet with heat transfer A. B. Vishalakshi, U.S. Mahabaleshwar, V. Anitha, Dia Zeidan ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly Porosity Impacts on MHD Casson Fluid past a Shrinking Cylinder with Suction Annuri Shobha, Murugan Mageswari, Aisha M. Alqahtani, Asokan Arulmozhi, Manyala Gangadhar Rao, Sudar Mozhi K, Ilyas Khan CREEPING FLOW OF COUPLE STRESS FLUID OVER A SPHERICAL FIELD ON A SATURATED BIPOROUS MEDIUM Shyamala Sakthivel , Pankaj Shukla, Selvi Ramasamy
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain