Доступ предоставлен для: Guest

LATTICE BOLTZMANN MODELING ON FORCED CONVECTIVE HEAT TRANSFER OF NANOFLUIDS IN HIGHLY CONDUCTIVE FOAM METALS WITH LOCAL THERMAL NONEQUILIBRIUM (LTNE) EFFECT

Том 22, Выпуск 12, 2019, pp. 1553-1571
DOI: 10.1615/JPorMedia.2019026966
Get accessGet access

Краткое описание

Highly conductive porous foams and nanofluids are efficient materials for enhancing heat transfer. This paper presents a numerical investigation of convective heat transfer of a nanofluid in porous foams using a lattice Boltzmann (LB) method. We model the nonequilibrium thermal transport of nanofluid and solid phases by considering the thermal conductivity difference of the nanofluid and the metal foam. Flow and heat transfer characteristics of nanofluids in metal foams are analyzed based on velocity and temperature fields. Effects of key parameters on flow and thermal performances are discussed. An entropy generation analysis is conducted for nanofluid convection in porous media. Results show that Nusselt number increases with a decrease in porosity and an increase in Reynolds number (Re), Darcy number (Da), thermal conductivities of nanoparticles and solid ligaments, and nanoparticle volume fraction. The performance evaluation criterion (PEC) is sensitive to Re in the range Re ≤ 600. This work provides a numerical procedure for the treatment of flow/thermal transport of nanofluids in porous media under the local thermal nonequilibrium (LTNE) condition.

ЛИТЕРАТУРА
  1. Abouei, M.A., Farhadi, M., Sedighi, K., and Latif, A.A., Lattice Boltzmann Simulation of Heat Transfer Enhancement in a Cold Plate Using Porous Medium, J. Heat Transf, vol. 135, pp. 803-816, 2013.

  2. Ata, A.S.V., Javaherdeh, K., and Ashorynejad, H.R., Magnetic Field Effects on Force Convection Flow of a Nanofluid in a Channel Partially Filled with Porous Media Using Lattice Boltzmann Method, Adv. Powder Technol., vol. 25, pp. 666-675, 2013.

  3. Bhattacharya, A., Calmidi, W., and Mahajan, R.L., Thermophysical Properties of High Porosity Metal Foams, Int. J. Heat Mass Transf., vol. 45, pp. 1017-1031,2002.

  4. Bhushan, B. and Jung, Y.C., Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction, Prog. Mater. Sci., vol. 56, no. 1, pp. 1-108,2011.

  5. Boomsma, K. and Poulikakos, D., On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam, Int. J. Heat Mass Transf, vol. 44, pp. 827-836, 2001.

  6. Buongiorno, J., Convective Transport in Nanofluids, ASMEJ. Heat Transf., vol. 128, pp. 240-250,2006.

  7. Che Sidik, N.A. and Aisyah Razali, S., Lattice Boltzmann Method for Convective Heat Transfer of Nanofluids-A Review, Renew. Sustain. Energy Rev., vol. 38, pp. 864-875, 2014.

  8. Gao, D., Chen, Z., Chen, L., and Zhang, D., A Modified Lattice Boltzmann Model for Conjugate Heat Transfer in Porous Media, Int. J. Heat Mass Transf, vol. 105, pp. 673-683,2017.

  9. Ghasemi, K. and Siavashi, M., MHD Nanofluid Free Convection and Entropy Generation in Porous Enclosures with Different Conductivity Ratios, J Magnet. Magnet. Mater., vol. 442, pp. 474-490, 2017.

  10. Guo, J., Fan, A., Zhang, X., and Liu, W., A Numerical Study on Heat Transfer and Friction Factor Characteristics of Laminar Flow in a Circular Tube Fitted with Center-Cleared Twisted Tape, Int. J. Therm. Sci., vol. 50, pp. 1263-1270,2011.

  11. Guo, Z. and Zhao, T.S., A Lattice Boltzmann Model for Convection Heat Transfer in Porous Media, Numer. Heat Transf., Part B: Fundamentals, vol. 47, pp. 157-177,2005.

  12. Hajipour, M. and Dehkordi, A.M., Mixed-Convection Flow of Al2O3-H2O Nanofluid in a Channel Partially Filled with Porous MetalFoam: Experimental and Numerical Study, Exp. Therm. Fluid Sci., vol. 53, pp. 46-56, 2014.

  13. Huang, Z.F., Nakayama, A., Yang, K., Yang, C., and Liu, W., Enhancing Heat Transfer in the Core Flow by Using Porous Medium Insert in a Tube, Int. J. Heat Mass Transf, vol. 53, pp. 1164-1174, 2010.

  14. Hunt, G., Karimi, N., and Torabi, M., Analytical Investigation of Heat Transfer and Classical Entropy Generation in Microreactors-The Influences of Exothermicity and Asymmetry, Appl. Therm. Eng., vol. 119, pp. 403-424, 2017.

  15. Karimipour, A., Esfe, M.H., and Safaei, M.R., Mixed Convection of Copper-Water Nanofluid in a Shallow Inclined Lid Driven Cavity Using the Lattice Boltzmann Method, Physica A Stat. Mech. Appl., vol. 402, pp. 150-168, 2014.

  16. Lee, S., Choi, S.U.S., Li, S., and Eastman, J.A., Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, J. Heat Transf., vol. 121, pp. 280-289, 1999.

  17. Li, P., Liu, Z., Liu, W., and Chen, G., Numerical Study on Heat Transfer Enhancement Characteristics of Tube Inserted with Centrally Hollow Narrow Twisted Tapes, Int. J. Heat Mass Transf, vol. 88, pp. 481-491, 2015.

  18. Lu, W., Zhao, C.Y., and Tassou, S.A., Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part I: Metal-Foam Filled Pipes, Int. J. Heat Mass Transf, vol. 49, pp. 2751-2761, 2006.

  19. Ma'iga, S.E.B., Palm, S.J., Nguyen, C.T., Roy, G., and Galanis, N., Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows, Int. J. Heat Fluid Flow, vol. 26, pp. 530-546,2005.

  20. Meghdadi Isfahani, A.H. and Afrand, M., Experiment and Lattice Boltzmann Numerical Study on Nanofluids Flow in a Micro-model as Porous Medium, Physica E: Low-Dimensional Syst. Nanostructures, vol. 94, pp. 1-21, 2017.

  21. Mohebbi, R., Rashidi, M.M., Izadi, M., Sidik, N.A.C., and Xian, H.W., Forced Convection of Nanofluids in an Extended Surfaces Channel Using Lattice Boltzmann Method, Int. J. Heat Mass Transf., vol. 117, pp. 1291-1303,2018.

  22. Nazari, M., Ashouri, M., Kayhani, M.H., and Tamayol, A., Experimental Study of Convective Heat Transfer of a Nanofluid through a Pipe Filled with Metal Foam, Int. J. Therm. Sci, vol. 88, pp. 33-39, 2015.

  23. Sakai, F., Li, W., and Nakayama, A., A Rigorous Derivation and Its Applications of Volume Averaged Transport Equations for Heat Transfer in Nanofluid Saturated Metal Foams, The 15th Int. Heat Transfer Conf, Tokyo, Japan, 2014.

  24. Seta, T., Takegoshi, E., Kitano, K., and Okui, K., Thermal Lattice Boltzmann Model for Incompressible Flows through Porous Media, J. Therm. Sci. Technol., vol. 1, pp. 90-100, 2016.

  25. Sheikholeslami, M., Numerical Investigation for CuO-H2O Nanofluid Flow in a Porous Channel with Magnetic Field Using Mesoscopic Method, J. Mol. Liq., vol. 249, pp. 739-746,2018.

  26. Ting, T.W., Hung, Y.M., and Guo, N., Entropy Generation of Viscous Dissipative Nanofluid Flow in Thermal Non-Equilibrium Porous Media Embedded in Microchannels, Int. J. Heat Mass Transf., vol. 81, pp. 862-877,2015.

  27. Torabi, M., Karimi, N., Peterson, G.P., and Yee, S., Challenges and Progress on the Modelling of Entropy Generation in Porous Media: A Review, Int. J. Heat Mass Transf., vol. 114, pp. 31-46, 2017a.

  28. Torabi, M., Torabi, M., and Ghiaasiaan, S.M., The Effect of Al2O3-Water Nanofluid on the Heat Transfer and Entropy Generation of Laminar Forced Convection through Isotropic Porous Media, Int. J. Heat Mass Transf., vol. 111, pp. 804-816, 2017b.

  29. Vafai, K. and Tien, C.L., Boundary and Inertia Effects on Convective Mass Transfer in Porous Media, Int. J. Heat Mass Transf., vol. 25, pp. 1183-1190, 1982.

  30. Wang, L., Huang, C., Yang, X., Chai, Z., and Shi, B., Effects of Temperature-Dependent Properties on Natural Convection of Power-Law Nanofluids in Rectangular Cavities with Sinusoidal Temperature Distribution, Int. J. Heat Mass Transf., vol. 128, pp. 688-699, 2019a.

  31. Wang, L., Yang, X., Huang, C., Chai, Z., and Shi, B., Hybrid Lattice Boltzmann-TVD Simulation of Natural Convection of Nanofluids in a Partially Heated Square Cavity Using Buongiorno's Model, Appl. Therm. Eng., vol. 146, pp. 318-327, 2019b.

  32. Xu, H.J., Gong, L., Huang, S.B., and Xu, M.H., Flow and Heat Transfer Characteristics of Nanofluid Flowing through Metal Foams, Int. J. Heat Mass Transf., vol. 83, pp. 399-407, 2015a.

  33. Xu, H.J., Gong, L., Zhao, C.Y., Yang, Y.H., andXu, Z.G., Analytical Considerations of Local Thermal Non-Equilibrium Conditions for Thermal Transport in Metal Foams, Int. J. Therm. Sci., vol. 95, pp. 73-87, 2015b.

  34. Xu, H.J., Gong, L., Zhao, C.Y., and Yin, Y., Non-Equilibrium Thermal Response of Porous Media in Unsteady Heat Conduction with Sinusoidally-Changing Boundary Temperature, J. Heat Transf., vol. 137, no. 11, p. 112601 (9 pages), 2015c. DOI: 10.1115/1.4030905.

  35. Xu, H.J. and Xing, Z.B., The Lattice Boltzmann Modeling on the Nanofluid Natural Convective Transport in a Cavity Filled with a Porous Foam, Int. Commun. Heat Mass Transf., vol. 89, pp. 73-82, 2017.

  36. Xu, H.J., Zhao, C.Y., and Vafai, K., Analysis of Double Slip Model for a Partially Filled Porous Microchannel-An Exact Solution, Euro. J. Mech.-B/Fluids, vol. 68, pp. 1-9, 2018.

  37. Yang, C., Li, W., and Nakayama, A., Convective Heat Transfer of Nanofluids in a Concentric Annulus, Int. J. Therm. Sci., vol. 71, pp. 249-257, 2013.

  38. Zhang, W., Li, W., and Nakayama, A., An Analytical Consideration of Steady-State Forced Convection within a Nanofluid-Saturated Metal Foam, J. Fluid Mech, vol. 769, pp. 590-620,2015.

  39. Zhang, X., Liu, Z., and Liu, W., Numerical Studies on Heat Transfer and Flow Characteristics for Laminar Flow in a Tube with Multiple Regularly Spaced Twisted Tapes, Int. J. Therm. Sci., vol. 58, pp. 157-167, 2012.

  40. Zhao, C.Y., Lu, T.J., and Hodson, H.P., Natural Convection in Metal Foams with Open Cells, Int. J. Heat Mass Transf., vol. 48, pp. 2452-2463, 2005.

  41. Zhao, C.Y., Lu, W., and Tassou, S.A., Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part II: Tube Heat Exchangers, Int. J. Heat Mass Transf, vol. 49, pp. 2762-2770, 2006.

  42. Zhou, L., Xuan, Y., and Li, Q., Multiscale Simulation of Flow and Heat Transfer of Nanofluid with Lattice Boltzmann Method, Int. J. Multiphase Flow, vol. 36, pp. 364-374, 2010.

ЦИТИРОВАНО В
  1. Khan Ambreen A., Naeem S., Ellahi R., Sait Sadiq M., Vafai K., Dufour and Soret effects on Darcy-Forchheimer flow of second-grade fluid with the variable magnetic field and thermal conductivity, International Journal of Numerical Methods for Heat & Fluid Flow, 30, 9, 2020. Crossref

  2. Saeedan Mehdi, Ziaei‐Rad Masoud, Afshari Ebrahim, Numerical thermal analysis of nanofluid flow through the cooling channels of a polymer electrolyte membrane fuel cell filled with metal foam, International Journal of Energy Research, 44, 7, 2020. Crossref

  3. Bhatti M. M., Riaz A., Zhang L., Sait Sadiq M, Ellahi R., Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis, Journal of Thermal Analysis and Calorimetry, 144, 6, 2021. Crossref

  4. Chu Yu-Ming, Khan M. Ijaz, Ur Rehman M. Israr, Kadry Seifedine, Nayak M. K., Flow and thermal management of MHD Cross nanofluids over a thin needle with auto catalysis chemical reactions, International Journal of Modern Physics B, 34, 30, 2020. Crossref

  5. Zou Lingeng, Zhang Xuelai, Yang Mai, Xu Jiayi, Effect of additive concentration on water solution under vacuum ambient: A molecular dynamics simulation study, Journal of Molecular Liquids, 342, 2021. Crossref

  6. Hamidi E., Ganesan P., Muniandy S.V., Amir Hassan M.H., Lattice Boltzmann Method simulation of flow and forced convective heat transfer on 3D micro X-ray tomography of metal foam heat sink, International Journal of Thermal Sciences, 172, 2022. Crossref

  7. Nazir Umar, Adil Sadiq M., Nawaz M., Non-Fourier thermal and mass transport in hybridnano-Williamson fluid under chemical reaction in Forchheimer porous medium, International Communications in Heat and Mass Transfer, 127, 2021. Crossref

  8. Tayebi Tahar, Chamkha Ali J., Öztop Hakan F., Bouzeroura Lynda, Local thermal non-equilibrium (LTNE) effects on thermal-free convection in a nanofluid-saturated horizontal elliptical non-Darcian porous annulus, Mathematics and Computers in Simulation, 194, 2022. Crossref

  9. Lori Mohammad Shamsoddini, Vafai Kambiz, Heat transfer and fluid flow analysis of microchannel heat sinks with periodic vertical porous ribs, Applied Thermal Engineering, 205, 2022. Crossref

  10. Kilic Bayram, Ipek Osman, Thermodynamic analysis of absorption cooling system with LiBr-Al2O3/water nanofluid using solar energy, Thermal Science, 26, 1 Part A, 2022. Crossref

Статьи, принятые к публикации

ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM Pushap Sharma, Deepak Bains, G. C. Rana Effect of Microstructures on Mass Transfer inside a Hierarchically-structured Porous Catalyst Masood Moghaddam, Abbas Abbassi, Jafar Ghazanfarian Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk Priya Bartwal, Himanshu Upreti, Alok Kumar Pandey Numerical Simulation of 3D Darcy-Forchheimer Hybrid Nanofluid Flow with Heat Source/Sink and Partial Slip Effect across a Spinning Disc Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng Application of Artificial Neural Network for Modeling of Motile Microorganism-Enhanced MHD Tangent Hyperbolic Nanofluid across a vertical Slender Stretching Surface Bilal Ali, Shengjun Liu, Hongjuan Liu Estimating the Spreading Rates of Hazardous Materials on Unmodified Cellulose Filter Paper: Implications on Risk Assessment of Transporting Hazardous Materials Heshani Manaweera Wickramage, Pan Lu, Peter Oduor, Jianbang Du ELASTIC INTERACTIONS BETWEEN EQUILIBRIUM PORES/HOLES IN POROUS MEDIA UNDER REMOTE STRESS Kostas Davanas Gravity modulation and its impact on weakly nonlinear bio-thermal convection in a porous layer under rotation: a Ginzburg-Landau model approach Michael Kopp, Vladimir Yanovsky Pore structure and permeability behavior of porous media under in-situ stress and pore pressure: Discrete element method simulation on digital core Jun Yao, Chunqi Wang, Xiaoyu Wang, Zhaoqin Huang, Fugui Liu, Quan Xu, Yongfei Yang Influence of Lorentz forces on forced convection of Nanofluid in a porous lid driven enclosure Yi Man, Mostafa Barzegar Gerdroodbary SUTTERBY NANOFLUID FLOW WITH MICROORGANISMS AROUND A CURVED EXPANDING SURFACE THROUGH A POROUS MEDIUM: THERMAL DIFFUSION AND DIFFUSION THERMO IMPACTS galal Moatimid, Mona Mohamed, Khaled Elagamy CHARACTERISTICS OF FLOW REGIMES IN SPIRAL PACKED BEDS WITH SPHERES Mustafa Yasin Gökaslan, Mustafa Özdemir, Lütfullah Kuddusi Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari A nanofluid couple stress flow due to porous stretching and shrinking sheet with heat transfer A. B. Vishalakshi, U.S. Mahabaleshwar, V. Anitha, Dia Zeidan ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly Porosity Impacts on MHD Casson Fluid past a Shrinking Cylinder with Suction Annuri Shobha, Murugan Mageswari, Aisha M. Alqahtani, Asokan Arulmozhi, Manyala Gangadhar Rao, Sudar Mozhi K, Ilyas Khan CREEPING FLOW OF COUPLE STRESS FLUID OVER A SPHERICAL FIELD ON A SATURATED BIPOROUS MEDIUM Shyamala Sakthivel , Pankaj Shukla, Selvi Ramasamy
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain