Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.49 5-летний Импакт фактор: 1.159 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019028906
pages 869-887


Gaetano Contento
Italian National Agency for New Technologies, Energy and Sustainable Economical Development Brindisi Research Centre (ENEA), 72100, Brindisi, Italy
Marcello Iasiello
Dipartimento di Ingegneria Industriale, Università degli studi di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
Maria Oliviero
Consiglio Nazionale delle Ricerche, Istituto per i Polimeri, Compositi e Biomedici, P.le Fermi 1, 80055 Portici, Italy
Nicola Bianco
Dipartimento di Ingegneria Industriale, Università degli studi di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
Vincenzo Naso
Dipartimento di Ingegneria Industriale, Università degli studi di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy

Краткое описание

Transport phenomena through open-cell foams are strongly affected by their complex microstructure. Morphological parameters, such as the diameter of pores and cells, the strut thickness, and the specific surface area, play key roles. Due to the intricate nature of an open-cell foam, its morphological models are very useful in engineering applications. We first review correlations in the literature of the morphological parameters that affect transport phenomena in foams. Then, with reference to the Kelvin's foam model, we present a unique model for the characterization of morphological parameters of open-cell foams, accounting for different strut shapes. New correlations among morphological parameters are proposed. There is good agreement between the correlations obtained with the proposed model and the experimental results from the literature. The model, accounting for any shape of the struts cross section, predicts values of foam morphological parameters generally closer to those predicted by available models not valid for all strut shapes.


  1. Ambrosio, G., Bianco, N., Chiu, W.K., Iasiello, M., Naso, V, and Oliviero, M., The Effect of Open-Cell Metal Foams Strut Shape on Convection Heat Transfer on Pressure Drop, Appl. Therm. Eng., vol. 103, pp. 333-343, 2016.

  2. Austin, S., Stephens, D., Walsh, K.K., Moore, C.A., Wesson, G.D., Njuguna, J., and Paul, R., Simulation of Open Microcellular Carbon Foams: Periodic and Aperiodic Structures, J. Porous Media, vol. 18, no. 3, pp. 231-244, 2015.

  3. Banhart, J., Manufacture, Characterization and Application of Cellular Metals and Metal Foams, Progr. Mater. Sci., vol. 46, no. 6, pp. 559-632, 2001.

  4. Bhattacharya, A., Calmidi, V.V., and Mahajan, R.L., Thermophysical Properties of High Porosity Metal Foams, Int. J. Heat Mass Transf., vol. 45, no. 5, pp. 1017-1031, 2002.

  5. Bianchi, E., Heidig, T., Visconti, C.G., Groppi, G., Freund, H., and Tronconi, E., An Appraisal of the Heat Transfer Properties of Metallic Open-Cell Foams for Strongly Exo-/Endo-Thermic Catalytic Processes in Tubular Reactors, Chem. Eng. J., vol. 198, pp. 512-528, 2012.

  6. Boomsma, K. and Poulikakos, D., On the Effective Thermal Conductivity of A Three-Dimensionally Structured Fluid-Saturated Metal Foam, Int. J. Heat Mass Transf, vol. 44, no. 4, pp. 827-836, 2001.

  7. Buciuman, F.C. and Kraushaar-Czarnetzki, B., Ceramic Foam Monoliths as Catalyst Carriers. 1. Adjustment and Description of the Morphology, Ind. Eng. Chem. Res., vol. 42, no. 9, pp. 1863-1869,2003.

  8. Calmidi, V.V. and Mahajan, R.L., Forced Convection in High Porosity Metal Foams, J. Heat Transf., vol. 122, no. 3, pp. 557-565, 2000.

  9. Chen, X., Tavakkoli, F., and Vafai, K., Analysis and Characterization of Metal Foam-Filled Double-Pipe Heat Exchangers, Numer. Heat Transf., Part A: Appl., vol. 68, no. 10, pp. 1031-1049, 2015.

  10. Choi, J.B. and Lakes, R.S., Fracture Toughness of Re-Entrant Foam Materials with a Negative Poisson's Ratio: Experiment and Analysis, Int. J. Fracture, vol. 80, no. 1, pp. 73-83,1996.

  11. Colombo, P., Conventional and Novel Processing Methods for Cellular Ceramics, Phil. Trans. Royal Soc. London A: Math., Phys. Eng. Sci, vol. 364, no. 1838, pp. 109-124,2006.

  12. Cunsolo, S., Iasiello, M., Oliviero, M., Bianco, N., Chiu, W.K.S., and Naso, V, Lord Kelvin and Weaire-Phelan Foam Models: Heat Transfer and Pressure Drop, J. Heat Transf., vol. 138, no. 2, pp. 022601-022607, 2016.

  13. De Jaeger, P., T'Joen, C., Huisseune, H., Ameel, B. and De Paepe, M., An Experimentally Validated and Parameterized Periodic Unit-Cell Reconstruction of Open-Cell Foams, J. Appl. Phys., vol. 109, no. 10, p. 103519,2011.

  14. Dietrich, B., Heat Transfer Coefficients for Solid Ceramic Sponges-Experimental Results and Correlation, Int. J. Heat Mass Transf, vol. 61, pp. 627-637, 2013.

  15. Fourie, J.G. and Du Plessis, J.P., Pressure Drop Modelling in Cellular Metallic Foams, Chem. Eng. Sci., vol. 57, no. 14, pp. 2781-2789, 2002.

  16. Gibson, L.J. and Ashby, M.F., Cellular Solids: Structure and Properties, Cambridge, U.K.: Cambridge University Press, 1997.

  17. Grosse, J., Dietrich, B., Martin, H., Kind, M., Vicente, J., and Hardy, E.H., Volume Image Analysis of Ceramic Sponges, Chem. Eng. Technol., vol. 31, no. 2, pp. 307-314,2008.

  18. Grosse, J., Dietrich, B., Incera Garrido, G.I., Habisreuther, P., Zarzalis, N., Martin, H., Kind, M., and Kraushaar-Czarnetzki, B., Morphological Characterization of Ceramic Sponges for Applications in Chemical Engineering, Ind. Eng. Chem. Res., vol. 48, no. 23, pp. 10395-10401,2009.

  19. Howell, J.R., Hall, M.J., and Ellzey, J.L., Combustion of Hydrocarbon F within Porous Inert Media, Prog. Energy Combust., vol. 22, no. 2, pp. 121-145, 1996.

  20. Huu, T.T., Lacroix, M., Huu, C.P., Schweich, D., and Edouard, D., Towards a More Realistic Modeling of Solid Foam: Use of the Pentagonal Dodecahedron Geometry, Chem. Eng. Sci., vol. 64, no. 24, pp. 5131-5142,2009.

  21. Iasiello, M., Cunsolo, S., Oliviero, M., Harris, W.M., Bianco, N., Chiu, W.K., and Naso, V, Numerical Analysis of Heat Transfer and Pressure Drop in Metal Foams for Different Morphological Models, J. Heat Transf., vol. 136, no. 11, pp. 112601-112610, 2014.

  22. Iasiello, M., Cunsolo, S., Bianco, N., Chiu, W.K.S., and Naso, V., Developing Thermal Flow in Open-Cell Foams, Int. J. Thermal Sci., vol. 111, pp. 129-137,2017.

  23. Inayat, A., Freund, H., Zeiser, T., and Schwieger, W., Determining the Specific Surface Area of Ceramic Foams: The Tetrakaidec- ahedra Model Revisited, Chem. Eng. Sci., vol. 66, no. 6, pp. 1179-1188,2011.

  24. Incera Garrido, G.I., Patcas, F.C., Lang, S., and Kraushaar-Czarnetzki, B., Mass Transfer and Pressure Drop in Ceramic Foams: A Description for Different Pore Sizes and Porosities, Chem. Eng. Sci., vol. 63, no. 21, pp. 5202-5217, 2008.

  25. Kelvin, S.W.T., On the Division of Space with Minimum Partitional Area, Acta Mathematica, vol. 11, no. 1,pp. 121-124, 1887.

  26. Kumar, P. and Topin, F., Micro-Structural Impact of Different Strut Shapes and Porosity on Hydraulic Properties of Kelvin-Like Metal Foams, Transp. Porous Media, vol. 105, no. 1, pp. 57-81, 2014.

  27. Kumar, P, Topin, F., and Tadrist, L., Geometrical Characterization of Kelvin-Like Metal Foams for Different Strut Shapes and Porosity, J. Porous Media, vol. 18, no. 6, pp. 637-652, 2015.

  28. Kumar, P, and Topin, F., Impact of Anisotropy on Geometrical and Thermal Conductivity of Metallic Foam Structures, J. Porous Media, vol. 18, no. 10, pp. 949-970, 2015.

  29. Lacroix, M., Nguyen, P, Schweich, D., Huu, C.P., Savin-Poncet, S., and Edouard, D., Pressure Drop Measurements and Modeling on SiC Foams, Chem. Eng. Sci., vol. 62, no. 12, pp. 3259-3267, 2011.

  30. Lu, T.J., Stone, H.A., and Ashby, M.F., Heat Transfer in Open-Cell Metal Foams, ActaMaterialia, vol. 46, no. 10, pp. 3619-3635, 1998.

  31. Mahjoob, S., and Vafai, K., A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers, Int. J. Heat Mass Transf., vol. 5, no. 15, pp. 3701-3711, 2008.

  32. Mancin, S., Single-Phase Heat Transfer and Fluid Flow through Enhanced Surfaces and in Microgeometries, PhD, Universita Degli Studi di Padova, 2008.

  33. Mancin, S., Zilio, C., Cavallini, A., and Rossetto, L., Heat Transfer during Air Flow in Aluminum Foams, Int. J. Heat and Mass Transf, vol. 53, no. 21, pp. 4976-4984, 2010.

  34. Petrasch, J., Meier, F., Friess, H., and Steinfeld, A., Tomography based Determination of Permeability, Dupuit-Forchheimer Coefficient and Interfacial Heat Transfer Coefficient in Reticulate Porous Ceramics, Int. J. Heat Fluid Flow, vol. 29, no. 1, pp. 315-326,2008.

  35. Plateau, J., Statique Experimental et Theorique des Liquides Soumis aux Seules Forces Molecularies, Gathier-Villars, Paris, 1873.

  36. Richardson, J.T.,Peng, Y., andRemue, D., Properties of Ceramic Foam Catalyst Supports: Pressure Drop, Appl. Catal. A: General, vol. 204, no. 1, pp. 19-32, 2000.

  37. Stemmet, C.P., Van Der Schaaf, J., Kuster, B.F.M., and Schouten, J.C., Solid Foam Packings for Multiphase Reactors, Chem. Eng. Res. Des, vol. 84, no. 12, pp. 1134-1141,2006.

  38. T'Joen, C., De Jaeger, P, Huisseune, H., Van Herzeele, S., Vorst, N., and De Paepe, M., Thermo-Hydraulic Study of a Single Row Heat Exchanger Consisting of Metal Foam Covered Round Tubes, Int. J. Heat Mass Transf., vol. 53, no. 15, pp. 3262-3274, 2010.

  39. Tawfik, H., Hung, Y., and Mahajan, D., Metal Bipolar Plates for PEM Fuel Cell-A Review, J. Power Sources, vol. 163, no. 2, pp. 755-767, 2007.

  40. Twigg, M.V. and Richardson, J.T., Fundamentals and Applications of Structured Ceramic Foam Catalysts, Ind. Eng. Chem. Res., vol. 46, no. 12, pp. 4166-4177, 2007.

  41. Wang, P, Vafai, K., and Liu, D.Y., Analysis of Radiative Effect under Local Thermal Non-Equilibrium Conditions in Porous Media-Application to a Solar Air Receiver, Numer. Heat Transf., Part A: Appl., vol. 65, no. 10, pp. 931-948, 2014.

  42. Weaire, D. and Phelan, R., A Counter-Example to Kelvin's Conjecture on Minimal Surfaces, Phil. Mag. Lett., vol. 69, no. 2, pp. 107-110, 1994.

  43. Wu, Z., Caliot, C., Bai, F., Flamant, G., Wang, Z., Zhang, J., and Tian, C., Experimental and Numerical Studies of the Pressure Drop in Ceramic Foams for Volumetric Solar Receiver Applications, Appl. Energy, vol. 87, no. 2, pp. 504-513, 2010.

  44. Xu, W., Zhang, H., Wei, W., Yang, Z., and Zhang, J., Numerical and Experimental Investigations on the Electrical Conductivity of Foam Materials, Special Topics Rev. Porous Media: Int. J., vol. 2, no. 1, pp. 35-42, 2011.

  45. Zafari, M., Panjepour, M., Meratian, M., and Emami, M.D., CFD Simulation of Forced Convective Heat Transfer by Tetrakaidec- ahedron Model in Metal Foams, J. Porous Media, vol. 19, no. 1,pp. 1-11,2016.

Articles with similar content:

International Heat Transfer Conference 13, Vol.0, 2006, issue
Fabrice Rigollet, J.-V. Daurelle, J. Vicente
Journal of Porous Media, Vol.16, 2013, issue 5
Jaona Harifidy Randrianalisoa, Dominique Baillis, Remi Coquard
Jaona Harifidy Randrianalisoa, Dominique Baillis, Remi Coquard
Modeling of Gas Flow through Isotropic Metallic Foams
Journal of Porous Media, Vol.9, 2006, issue 1
Roland Riva, Jack Legrand, Jean Prieur Du Plessis, Sonia Crosnier
Journal of Porous Media, Vol.18, 2015, issue 6
Prashant Kumar, Lounes Tadrist, Frederic Topin