Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.752 5-летний Импакт фактор: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Выпуски:
Том 24, 2021 Том 23, 2020 Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v17.i9.20
pages 763-784

WELL-POSEDNESS AND NUMERICAL SOLUTION OF A NONLINEAR VOLTERRA PARTIAL INTEGRO-DIFFERENTIAL EQUATION MODELING A SWELLING POROUS MATERIAL

Keith J. Wojciechowski
Department of Mathematics, Statistics, and Computer Science, University of Wisconsin−Stout, 202D Jarvis Hall Science Wing, 41010th Avenue East, Menomonie, WI54751-0790, USA
Jinhai Chen
Department of Mathematical and Statistical Sciences, University of Colorado−Denver, Campus Box 170, PO Box 173364, Denver, CO 80217-3364, USA
Lynn Schreyer-Bennethum
Department of Mathematical and Statistical Sciences, University of Colorado−Denver, Campus Box 170, PO Box 173364, Denver, CO 80217-3364, USA
Kristian Sandberg
Computational Solutions, Inc., 1800 30th St. Suite 210B, Boulder, CO 80301-1088, USA

Краткое описание

We mathematically analyze an initial-boundary value problem that involves a nonlinear Volterra partial integro-differential equation derived using hybrid mixture theory and used to model swelling porous materials where the application is an immersed, porous cylindrical material imbibing fluid through its exterior boundary. The model is written as an initial-boundary value problem and we establish well-posedness and numerically solve it using a novel approach to constructing pseudospectral differentiation matrices in a polar geometry. Numerical results are obtained and interpretations are provided for a small variety of diffusion and permeability coefficients and parameters to simulate the model's behavior and to demonstrate its viability as a model for swelling porous materials exhibiting viscoelastic behavior.


Articles with similar content:

Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri
A Prototype Homogenization Model for Acoustics of Granular Materials
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 5-6
Xuming Xie, Robert P Gilbert, Alexander Panchenko
GENERAL FORMULATION OF A POROMECHANICAL COHESIVE SURFACE ELEMENT WITH ELASTOPLASTICITY FOR MODELING INTERFACES IN FLUID-SATURATED GEOMATERIALS
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 4
Zheng Duan, John D. Sweetser, Wei Wang, Erik W. Jensen, Richard A. Regueiro
A Stochastic Nonlocal Model for Materials with Multiscale Behavior
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Jianxu Shi, Roger Ghanem
A Fast Multipole Boundary Integral Equation Method for Periodic Boundary Value Problems in Three-Dimensional Elastostatics and its Application to Homogenization
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
N. Nishimura, Y. Otani