Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.752 5-летний Импакт фактор: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Выпуски:
Том 23, 2020 Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v19.i10.40
pages 885-900

COMPARISON STUDY OF DIFFERENT VISCOUS DISSIPATION EFFECTS ON FORCED CONVECTION HEAT TRANSFER IN A POWER LAW FLUID SATURATED POROUS MEDIUM

Xingwang Tian
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; School of Ocean and Civil Engineering, Dalian Ocean University, Dalian 116023, China
Ping Wang
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
Shiming Xu
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
Xi Wu
Dalian University of Technology, 2 Ling Gong Rd. Gan Jingzi District, Dalian 116024, China

Краткое описание

Based on the Darcy-Brinkman-Forchheimer flow model, this study analyzed and compared the viscous dissipation effects during the process of a forced and fully developed convection heat transfer in a flat channel. The channel was filled with a kind of porous medium saturated by a power law fluid. Three different terms were considered to analyze the viscous dissipation, namely, the Darcy term, Al-Hadharami term, and Forchheimer term. In this comparative study, we have taken the Forchhemier term into consideration since some researchers thought it might have an indirect effect on the dissipation function, although others argued. The dimensionless calculation expressions of the axial velocity distribution and temperature distribution were deduced, and solved numerically by employing the classical Runge-Kutta fourth-order scheme subject to uniform heat flux. Variations of the dimensionless temperature are examined and discussed, which is the function of the Brinkman number, Darcy number, Forchheimer inertial parameter, and power law index. It is found that the temperature profiles were quite close to the velocity profiles and obviously influenced by the relative magnitude of these dimensionless parameters. The results also indicated that the rate of heat transfer was significantly affected by different viscous dissipation terms.


Articles with similar content:

FREE CONVECTION IN A NON-NEWTONIAN POWER-LAW FLUID-SATURATED POROUS MEDIUM WITH CHEMICAL REACTION AND RADIATION EFFECTS
Special Topics & Reviews in Porous Media: An International Journal, Vol.4, 2013, issue 3
G. Swamy Reddy, Darbhasayanam Srinivasacharya
Time Varying Flow of a Power Law Fluid in a Porous Medium between Parallel Porous Plates with Heat Transfer under an Exponential Decaying Pressure Gradient
Journal of Porous Media, Vol.11, 2008, issue 5
Hazem Ali Attia
A COMPUTATIONAL ANALYSIS OF NATURAL CONVECTION IN A VERTICAL CHANNEL WITH A MODIFIED POWER LAW NON-NEWTONIAN FLUID
International Heat Transfer Conference 11, Vol.8, 1998, issue
Shah-Rong Lee , George Alanson Greene, Thomas F. Irvine, Jr.
A FINITE ELEMENT NUMERICAL APPROACH TO UNSTEADY FREE CONVECTIVE FLOW OF MICROPOLAR FLUID PAST AN INCLINED PLATE WITH DISSIPATIVE HEAT ENERGY
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 6
Satyaranjan R. Mishra, D. K. Mohapatra, MD. Shamshuddin
TRANSIENT MAGNETOHYDRODYNAMIC (MHD) CASSON FLUID FLOW PAST AN OSCILLATING ROTATING VERTICAL PLATE EMBEDDED IN A POROUS MEDIUM
Special Topics & Reviews in Porous Media: An International Journal, Vol.9, 2018, issue 3
S. Das, A. Sensharma, Rabindra N. Jana, A. S. Banu