Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Печать: 0278-940X
ISSN Онлайн: 1943-619X

Выпуски:
Том 47, 2019 Том 46, 2018 Том 45, 2017 Том 44, 2016 Том 43, 2015 Том 42, 2014 Том 41, 2013 Том 40, 2012 Том 39, 2011 Том 38, 2010 Том 37, 2009 Том 36, 2008 Том 35, 2007 Том 34, 2006 Том 33, 2005 Том 32, 2004 Том 31, 2003 Том 30, 2002 Том 29, 2001 Том 28, 2000 Том 27, 1999 Том 26, 1998 Том 25, 1997 Том 24, 1996 Том 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v40.i4.80
pages 341-351

Sepsis: From Pattern to Mechanism and Back

Gary An
Department of Surgery, University of Chicago, Chicago, IL 60637; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
Rami A. Namas
Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
Yoram Vodovotz
Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213

Краткое описание

Sepsis is a clinical entity in which complex inflammatory and physiological processes are mobilized, not only across a range of cellular and molecular interactions, but also in clinically relevant physiological signals accessible at the bedside. There is a need for a mechanistic understanding that links the clinical phenomenon of physiologic variability with the underlying patterns of the biology of inflammation, and we assert that this can be facilitated through the use of dynamic mathematical and computational modeling. An iterative approach of laboratory experimentation and mathematical/computational modeling has the potential to integrate cellular biology, physiology, control theory, and systems engineering across biological scales, yielding insights into the control structures that govern mechanisms by which phenomena, detected as biological patterns, are produced. This approach can represent hypotheses in the formal language of mathematics and computation, and link behaviors that cross scales and domains, thereby offering the opportunity to better explain, diagnose, and intervene in the care of the septic patient.