Доступ предоставлен для: Guest
Critical Reviews™ in Biomedical Engineering

Выходит 6 номеров в год

ISSN Печать: 0278-940X

ISSN Онлайн: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Biomaterial Design Considerations for Repairing the Injured Spinal Cord

Том 39, Выпуск 2, 2011, pp. 125-180
DOI: 10.1615/CritRevBiomedEng.v39.i2.30
Get accessGet access

Краткое описание

With increasing regularity, biomaterials are being designed with the goal of promoting repair of the injured spinal cord. Most often, the efficacy of novel biomaterials is tested using in vitro models; however, their true potential will be realized only after they are applied and evaluated in standardized in vivo spinal cord injury (SCI) models. The purpose of this review is to (1) provide a primer on SCI research including an overview of common pathogenic mechanisms that may respond to biomaterials and the in vivo models and outcomes assessment tools used to evaluate therapeutic efficacy; (2) review the types of biomaterials that have been tested in these models; (3) discuss which biomaterials might be applied to these models in the future; and (4) recommend future engineering strategies to create better in vivo models and assessment tools.

ЦИТИРОВАНО В
  1. Fabbro Alessandra, Prato Maurizio, Ballerini Laura, Carbon nanotubes in neuroregeneration and repair, Advanced Drug Delivery Reviews, 65, 15, 2013. Crossref

  2. des Rieux Anne, De Berdt Pauline, Ansorena Eduardo, Ucakar Bernard, Damien Jacobs, Schakman Olivier, Audouard Emilie, Bouzin Caroline, Auhl Dietmar, Simón-Yarza Teresa, Feron Olivier, Blanco-Prieto Maria J., Carmeliet Peter, Bailly Christian, Clotman Fréderic, Préat Véronique, Vascular endothelial growth factor-loaded injectable hydrogel enhances plasticity in the injured spinal cord, Journal of Biomedical Materials Research Part A, 102, 7, 2014. Crossref

  3. Woller Sarah A., Hook Michelle A., Opioid administration following spinal cord injury: Implications for pain and locomotor recovery, Experimental Neurology, 247, 2013. Crossref

  4. Zuidema Jonathan M., Hyzinski-García María C., Van Vlasselaer Kristien, Zaccor Nicholas W., Plopper George E., Mongin Alexander A., Gilbert Ryan J., Enhanced GLT-1 mediated glutamate uptake and migration of primary astrocytes directed by fibronectin-coated electrospun poly-l-lactic acid fibers, Biomaterials, 35, 5, 2014. Crossref

  5. Saxena Tarun, Pai S, Mukhatyar Vivek, Bellamkonda Ravi, Nanotechnology for Neural Tissue Engineering, in Nanotechnology and Regenerative Engineering, 2014. Crossref

  6. Rivet Christopher J, Zhou Kun, Gilbert Ryan J, Finkelstein David I, Forsythe John S, Cell infiltration into a 3D electrospun fiber and hydrogel hybrid scaffold implanted in the brain, Biomatter, 5, 1, 2015. Crossref

  7. Kaneko Ai, Matsushita Akira, Sankai Yoshiyuki, A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats, Biomedical Materials, 10, 1, 2015. Crossref

  8. Schaub Nicholas J., Le Beux Clémentine, Miao Jianjun, Linhardt Robert J., Alauzun Johan G., Laurencin Danielle, Gilbert Ryan J., Zhao Feng, The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension, PLOS ONE, 10, 9, 2015. Crossref

  9. Jiao Genlong, Pan Yongqin, Wang Cunchuang, Li ZhaoXia, Li Zhizhong, Guo Rui, A bridging SF/Alg composite scaffold loaded NGF for spinal cord injury repair, Materials Science and Engineering: C, 76, 2017. Crossref

  10. Dubey Amarish, Jangir Himanshi, Pandey Mohit, Dubey Mayank Manjul, Verma Shourya, Roy Manas, Singh Sushil Kumar, Philip Deepu, Sarkar Sabyasachi, Das Mainak, An eco-friendly, low-power charge storage device from bio-tolerable nano cerium oxide electrodes for bioelectrical and biomedical applications, Biomedical Physics & Engineering Express, 4, 2, 2018. Crossref

  11. Guest James D., Moore Simon W., Aimetti Alex A., Kutikov Artem B., Santamaria Andrea J., Hofstetter Christoph P., Ropper Alexander E., Theodore Nicholas, Ulich Thomas R., Layer Richard T., Internal decompression of the acutely contused spinal cord: Differential effects of irrigation only versus biodegradable scaffold implantation, Biomaterials, 185, 2018. Crossref

  12. Perepelytsina Olena M., Ugnivenko Andriy P., Sydorenko Mychailo V., Prospects of carbon nanotubes as matrices for cell technologies, in Fullerens, Graphenes and Nanotubes, 2018. Crossref

  13. Liu Chen-Jun, Liu Hai-Ying, Zhu Zhen-Qi, Zhang Yuan-Yuan, Wang Kai-Feng, Xia Wei-Wei, Roles of extra-cellular signal-regulated protein kinase 5 signaling pathway in the development of spinal cord injury, Chinese Medical Journal, 132, 21, 2019. Crossref

  14. Donoghue Peter S., Sun Tao, Gadegaard Nikolaj, Riehle Mathis O., Barnett Susan C., Development of a Novel 3D Culture System for Screening Features of a Complex Implantable Device for CNS Repair, Molecular Pharmaceutics, 11, 7, 2014. Crossref

  15. McKay Christopher A., Pomrenke Rebecca D., McLane Joshua S., Schaub Nicholas J., DeSimone Elise K., Ligon Lee A., Gilbert Ryan J., An Injectable, Calcium Responsive Composite Hydrogel for the Treatment of Acute Spinal Cord Injury, ACS Applied Materials & Interfaces, 6, 3, 2014. Crossref

  16. Zuidema Jonathan M., Provenza Christina, Caliendo Tyler, Dutz Silvio, Gilbert Ryan J., Magnetic NGF-Releasing PLLA/Iron Oxide Nanoparticles Direct Extending Neurites and Preferentially Guide Neurites along Aligned Electrospun Microfibers, ACS Chemical Neuroscience, 6, 11, 2015. Crossref

  17. Johnson Christopher D. L., Ganguly Debmalya, Zuidema Jonathan M., Cardinal Thomas J., Ziemba Alexis M., Kearns Kathryn R., McCarthy Simon M., Thompson Deanna M., Ramanath Ganpati, Borca-Tasciuc Diana A., Dutz Silvio, Gilbert Ryan J., Injectable, Magnetically Orienting Electrospun Fiber Conduits for Neuron Guidance, ACS Applied Materials & Interfaces, 11, 1, 2019. Crossref

  18. Nawrotek Katarzyna, Marqueste Tanguy, Caron Guillaume, Modrzejewska Zofia, Zarzycki Roman, Decherchi Patrick, Reconstruction of the Injured Spinal Cord by Implantation of a Hydrogel based on Chitosan and β-Glycerol Phosphate-motor Behavior and Ventilatory Assessments, Procedia Engineering, 59, 2013. Crossref

  19. Saxena Tarun, Gilbert Ryan J, Pai Balakrishna S, Bellamkonda Ravi V, Biomedical Strategies for Axonal Regeneration, in eLS, 2011. Crossref

  20. Jiang Ji-Peng, Liu Xiao-Yin, Zhao Fei, Zhu Xiang, Li Xiao-Yin, Niu Xue-Gang, Yao Zi-Tong, Dai Chen, Xu Hui-You, Ma Ke, Chen Xu-Yi, Zhang Sai, Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury, Neural Regeneration Research, 15, 5, 2020. Crossref

  21. Han Qi, Zheng Tiantian, Zhang Linhui, Wu Ningling, Liang Jiaqi, Wu Hong, Li Guicai, Metformin loaded injectable silk fibroin microsphere for the treatment of spinal cord injury, Journal of Biomaterials Science, Polymer Edition, 33, 6, 2022. Crossref

  22. Silva Nuno A., Sousa Nuno, Reis Rui L., Salgado António J., From basics to clinical: A comprehensive review on spinal cord injury, Progress in Neurobiology, 114, 2014. Crossref

  23. Torregrosa Tess, Koppes Ryan A., Bioelectric Medicine and Devices for the Treatment of Spinal Cord Injury, Cells Tissues Organs, 202, 1-2, 2016. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain