Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Печать: 0278-940X
ISSN Онлайн: 1943-619X

Том 47, 2019 Том 46, 2018 Том 45, 2017 Том 44, 2016 Том 43, 2015 Том 42, 2014 Том 41, 2013 Том 40, 2012 Том 39, 2011 Том 38, 2010 Том 37, 2009 Том 36, 2008 Том 35, 2007 Том 34, 2006 Том 33, 2005 Том 32, 2004 Том 31, 2003 Том 30, 2002 Том 29, 2001 Том 28, 2000 Том 27, 1999 Том 26, 1998 Том 25, 1997 Том 24, 1996 Том 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v39.i4.20
pages 263-280

Emergent Structure-Function Relations in Emphysema and Asthma

Tilo Winkler
Harvard Medical School
Bela Suki
Department of Biomedical Engineering, Boston University, Boston, Massachusetts

Краткое описание

Structure-function relationships in the respiratory system are often a result of the emergence of self-organized patterns or behaviors that are characteristic of certain respiratory diseases. Proper description of such self-organized behavior requires network models that include nonlinear interactions among different parts of the system. This review focuses on 2 models that exhibit self-organized behavior: a network model of the lung parenchyma during the progression of emphysema that is driven by mechanical force-induced breakdown, and an integrative model of bronchoconstriction in asthma that describes interactions among airways within the bronchial tree. Both models suggest that the transition from normal to pathologic states is a nonlinear process that includes a tipping point beyond which interactions among the system components are reinforced by positive feedback, further promoting the progression of pathologic changes. In emphysema, the progressive destruction of tissue is irreversible, while in asthma, it is possible to recover from a severe bronchoconstriction. These concepts may have implications for pulmonary medicine. Specifically, we suggest that structure-function relationships emerging from network behavior across multiple scales should be taken into account when the efficacy of novel treatments or drug therapy is evaluated. Multiscale, computational, network models will play a major role in this endeavor.

Articles with similar content:

Factors Determining Airway Caliber in Asthma
Critical Reviews™ in Biomedical Engineering, Vol.41, 2013, issue 6
Brian C. Harvey, Kenneth R. Lutchen
Computational Modeling of Airway and Pulmonary Vascular Structure and Function: Development of a "Lung Physiome"
Critical Reviews™ in Biomedical Engineering, Vol.39, 2011, issue 4
Merryn Tawhai, A. R. Clark, K. S. Burrowes, G. M. Donovan
Bioelectrical Impedance Techniques in Medicine
Part III: Impedance Imaging
Third Section: Medical Applications

Critical Reviews™ in Biomedical Engineering, Vol.24, 1996, issue 4-6
Bernard Rigaud, Jean-Pierre Morucci
The Biomechanics of Upper Extremity Kinematic and Kinetic Modeling: Applications to Rehabilitation Engineering
Critical Reviews™ in Biomedical Engineering, Vol.36, 2008, issue 2-3
Gerald F. Harris, Brooke A. Slavens
Computed Tomography Image Matching in Chronic Obstructive Pulmonary Disease
Critical Reviews™ in Biomedical Engineering, Vol.44, 2016, issue 6
Surya P. Bhatt, Sandeep Bodduluri, Joseph M. Reinhardt