Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Biomedical Engineering
SJR: 0.243 SNIP: 0.376 CiteScore™: 0.79

ISSN Печать: 0278-940X
ISSN Онлайн: 1943-619X

Выпуски:
Том 47, 2019 Том 46, 2018 Том 45, 2017 Том 44, 2016 Том 43, 2015 Том 42, 2014 Том 41, 2013 Том 40, 2012 Том 39, 2011 Том 38, 2010 Том 37, 2009 Том 36, 2008 Том 35, 2007 Том 34, 2006 Том 33, 2005 Том 32, 2004 Том 31, 2003 Том 30, 2002 Том 29, 2001 Том 28, 2000 Том 27, 1999 Том 26, 1998 Том 25, 1997 Том 24, 1996 Том 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v35.i1-2.20
pages 37-121

Thermal Therapy, Part III: Ablation Techniques

Riadh W. Y. Habash
McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health/School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada
Rajeev Bansal
Department of Electrical and Computer Engineering, University of Connecticut, Connecticut, USA
Daniel Krewski
McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa, Ottawa, Ontario, Canada
Hafid T. Alhafid
College of Engineering and Applied Sciences, Al Ghurair University, Dubai, UAE; and McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa, Ottawa, Ontario, Canada

Краткое описание

Ablative treatments are gaining increasing attention as an alternative to standard surgical therapies, especially for patients with contraindication or those who refuse open surgery. Thermal ablation is used in clinical applications mainly for treating heart arrhythmias, benign prostate hyperplasia, and nonoperable liver tumors; there is also increasing application to other organ sites, including the kidney, lung, and brain. Potential benefits of thermal ablation include reduced morbidity and mortality in comparison with standard surgical resection and the ability to treat nonsurgical patients. The purpose of this review is to outline and discuss the engineering principles and biological responses by which thermal ablation techniques can provide elevation of temperature in organs within the human body. Because of the individual problems associated with each type of treatment, a wide range of ablation techniques have evolved including cryoablation as well as ultrasound, radiofrequency (RF), microwave, and laser ablation. Aspects of each ablation technique, including mechanisms of action, equipment required, selection of eligible patients, treatment techniques, and patient outcomes are presented, along with a discussion of limitations of the techniques and future research directions.


Articles with similar content:

Thermal Therapy Approaches for Treatment of Brain Tumors in Animals and Humans
Critical Reviews™ in Biomedical Engineering, Vol.44, 2016, issue 6
Ann-Marie Broome, Anjan Motamarry, Dieter Haemmerich, Kris Helke, M. A. McCrackin, Chao Chen, A. L. Bredlau
A Review of Hyperthermia Combined With Radiotherapy/Chemotherapy on Malignant Tumors
Critical Reviews™ in Biomedical Engineering, Vol.38, 2010, issue 1
Wei Rao, Zhong-Shan Deng
MICROSCALE THERMAL TRANSPORT: SOME BIOMEDICAL PERSPECTIVES AND BEYOND
International Heat Transfer Conference 16, Vol.2, 2018, issue
Suman Chakraborty
Prediction of Outcomes Following Severe Traumatic Brain Injury
Critical Reviews™ in Physical and Rehabilitation Medicine, Vol.26, 2014, issue 1-2
Richard Seemann
Treating Chronic Cognitive Impairment After Traumatic Brain Injury: A Review of Post-traumatic Neurotransmitter-Based Interventions
Critical Reviews™ in Physical and Rehabilitation Medicine, Vol.16, 2004, issue 4
Robert J. Hamm, Mark D. Whiting