Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Biomedical Engineering
SJR: 0.26 SNIP: 0.375 CiteScore™: 1.4

ISSN Печать: 0278-940X
ISSN Онлайн: 1943-619X

Том 48, 2020 Том 47, 2019 Том 46, 2018 Том 45, 2017 Том 44, 2016 Том 43, 2015 Том 42, 2014 Том 41, 2013 Том 40, 2012 Том 39, 2011 Том 38, 2010 Том 37, 2009 Том 36, 2008 Том 35, 2007 Том 34, 2006 Том 33, 2005 Том 32, 2004 Том 31, 2003 Том 30, 2002 Том 29, 2001 Том 28, 2000 Том 27, 1999 Том 26, 1998 Том 25, 1997 Том 24, 1996 Том 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2017024461
pages 459-472

The Virtual Microbiome: Computational Approaches to the Study of Microbe-Host Interactions

Joshua J. Pothen
Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405
Anne E. Dixon
Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405
Jason H. T. Bates
Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405

Краткое описание

The GI tract of a normal adult human contains on the order of 1014 foreign living organisms, collectively known as the gut microbiome, the proper maintenance of which is critical for health. Because the gut microbiome is a dynamic system of vast complexity, computational modeling is assuming an increasingly important role in helping us to understand how and why it behaves as it does. In particular, computational models can serve as a rapid, cost-effective means of simulating the microbiome on multiple scales, from that of an individual bacterium to the microbiome as a whole. This not only allows questions to be addressed in ways that are impractical in the experimental laboratory; it also permits competing hypotheses to be interrogated for feasibility before they are subjected to expensive and time-consuming experimental testing. Here we review some of the differential equation–based and agent-based approaches that have been applied to the computational modeling of the gut microbiome and its effects on the rest of the body. The models discussed are helping us understand how the microbiome works as a system, how it maintains its crucial symbiotic relationship with its host, and, in particular, how its malfunctions can lead to a number of important and often serious pathologies.

Articles with similar content:

Suspension Culture of Pluripotent Stem Cells: Effect of Shear on Stem Cell Fate
Critical Reviews™ in Eukaryotic Gene Expression, Vol.24, 2014, issue 1
Kevin C. Keller, Beatriz Rodrigues, Nicole I. zur Nieden
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 1
Cristiano Fernandes, Jocelia Barcellos, Jessica Kubrusly, Helio Lopes
Abstract of "Bioethics−an Evolutionary Perspective"
Journal of Long-Term Effects of Medical Implants, Vol.18, 2008, issue 1
Pamela S. Saha
Ethics of Using Animal Models as Predictors of Human Response in Tissue Engineering
Ethics in Biology, Engineering and Medicine: An International Journal, Vol.10, 2019, issue 1
Elizabeth A. Henning, Jessica M. Falcon, James P. Karchner, Robert L. Mauck, Nancy Pleshko
Journal of Women and Minorities in Science and Engineering, Vol.23, 2017, issue 2
Martin Bremer, Roxanne Hughes