Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Enhanced Heat Transfer
Импакт фактор: 0.562 5-летний Импакт фактор: 0.605 SJR: 0.175 SNIP: 0.361 CiteScore™: 0.33

ISSN Печать: 1065-5131
ISSN Онлайн: 1026-5511

Выпуски:
Том 27, 2020 Том 26, 2019 Том 25, 2018 Том 24, 2017 Том 23, 2016 Том 22, 2015 Том 21, 2014 Том 20, 2013 Том 19, 2012 Том 18, 2011 Том 17, 2010 Том 16, 2009 Том 15, 2008 Том 14, 2007 Том 13, 2006 Том 12, 2005 Том 11, 2004 Том 10, 2003 Том 9, 2002 Том 8, 2001 Том 7, 2000 Том 6, 1999 Том 5, 1998 Том 4, 1997 Том 3, 1996 Том 2, 1995 Том 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2012003327
pages 259-270

HEAT TRANSFER ACROSS SILICON−ALUMINUM−SILICON THIN FILMS DUE TO ULTRA−SHORT LASER PULSE IRRADIATION

S. Bin-Mansoor
ME Department, King Fahd University of Petroleum & Minerals, Saudi Arabia
Bekir S. Yilbas
Mechanical Engineering Department, KFUPM Box 1913, Dhahran 31261, Saudi Arabia

Краткое описание

Heat transfer across silicon−aluminum−silicon thin films due to ultrashort laser pulse irradiation is examined. Since silicon films are dielectric and do not have electrons in the conduction band, phonon radiative transport, based on the Boltzmann transport equation, is incorporated to predict equivalent equilibrium temperature in the silicon thin films. The modified two-equation model is used to account for the nonequilibrium ultrashort laser pulse heating in the aluminum film. The thermal boundary resistance is introduced at the interface of the films and the volumetric electron−phonon resistance is incorporated at the aluminum interfaces. The reflection, absorption, and transmittance of the incident beam by the thin films are determined using the matrix method. Temporal variation of equivalent equilibrium temperature in the silicon thin film is validated with the data presented in the previous study. It is found that the lattice phonon temperature in the aluminum film decays sharply toward the interface due to phonon transport to silicon film. The temperature jump at the silicon−aluminum first interface attains high values when the lattice phonon temperature at the aluminum interface is high.