Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Enhanced Heat Transfer
Импакт фактор: 0.562 5-летний Импакт фактор: 0.605 SJR: 0.175 SNIP: 0.361 CiteScore™: 0.33

ISSN Печать: 1065-5131
ISSN Онлайн: 1026-5511

Выпуски:
Том 27, 2020 Том 26, 2019 Том 25, 2018 Том 24, 2017 Том 23, 2016 Том 22, 2015 Том 21, 2014 Том 20, 2013 Том 19, 2012 Том 18, 2011 Том 17, 2010 Том 16, 2009 Том 15, 2008 Том 14, 2007 Том 13, 2006 Том 12, 2005 Том 11, 2004 Том 10, 2003 Том 9, 2002 Том 8, 2001 Том 7, 2000 Том 6, 1999 Том 5, 1998 Том 4, 1997 Том 3, 1996 Том 2, 1995 Том 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2020031625
pages 143-158

EFFECTS ON TEMPERATURE AND VELOCITY DISTRIBUTION DUE TO APPLICATION OF PULSED CORONA DISCHARGES IN LIQUID-PHASE ETHANOL

Viacheslav Plotnikov
Department of Mechanical Engineering, University of California, Merced, CA, 95343, USA
Gerardo Diaz
Department of Mechanical Engineering, University of California, Merced, CA 95343, U.S.A.
Edbertho Leal-Quiros
Department of Mechanical Engineering, University of California, Merced, CA, 95343, USA

Краткое описание

The effect of pulsed electrical discharges generated in liquid-phase ethanol was analyzed experimentally and computationally. A pin-to-plate reactor was chosen due to its simplicity and effectiveness in producing high electric fields, where 30 kV positive high voltage pulses with microsecond rise times were generated. It was found that pulse frequency has a significant effect on the size of the plasma discharge. Frequencies of > 400 Hz produced a shortening of streamers in addition to a rise of the temperature during treatment of ethanol. Numerical simulations show that the electric field increases the mixing inside the reactor leading to a more uniform temperature profile.

Ключевые слова: plasma discharge, liquid phase, ethanol

ЛИТЕРАТУРА

  1. Akiyama, H., Streamer Discharges in Liquids and Their Applications, IEEE Trans. Dielectrics Elec. Insulation, vol. 7, pp. 646-653, 2000.

  2. Al-Arainy, A., Jayaram, S., and Cross, J., Pulsed Corona for Removing Volatile Impurities from Drinking Water, 12th Int. Conf. on Conduction and Breakdown in Dielectric Liquids, pp. 427-431, 1996.

  3. Bruggeman, P. and Leys, C., Non-Thermal Plasmas in and in Contact with Liquids, J. Phys. D, vol. 42, no. 5, p. 053001,2009.

  4. Bruggeman, P.J., Kushner, M.J., Locke, B.R., Gardeniers, J.G.E., Graham, W.G., Graves, D.B., Hofman-Caris, R.C.H.M., Maric, D., Reid, J.P., Ceriani, E., Rivas, D.F., Foster, J.E., Garrick, S.C., Gorbanev, Y., Hamaguchi, S., Iza, F., Jablonowski, H., Klimova, E., Kolb, J., Krcma, F., Lukes, P., Machala, Z., Marinov, I., Mariotti, D., Thagard, S.M., Minakata, D., Neyts, E.C., Pawlat, J., Petrovic, Z.L., Pflieger, R., Reuter, S., Schram, D.C., Schroter, S., Shiraiwa, M., Tarabova, B., Tsai, P.A., Verlet, J.R.R., von Woedtke, T., Wilson, K.R., Yasui, K., and Zvereva, G., Plasma-Liquid Interactions: a Review and Roadmap, Plasma Sources Sci. Technol., vol. 25, no. 5, p. 053002,2016.

  5. Cristina, S., Dinelli, G., and Feliziani, M., Numerical Computation of Corona Space Charge and V-I Characteristic in DC Electrostatic Precipitators, IEEE Trans. Ind. Appl., vol. 27, no. 1, pp. 147-153,1991.

  6. De Vahl Davis, G., Natural Convection of Air in a Square Cavity a Bench Mark Numerical Solution, Int. J. Numer. Methods Fluids, vol. 3, pp. 249-264, 1983.

  7. Feng, Y.Y. and Wang, C.H., Discontinuous Finite Element Method with a Local Numerical Flux Scheme for Radiative Transfer with Strong Inhomogeneity, Int. J. Heat Mass Transf., vol. 126, Part B, pp. 783-795, 2018.

  8. Hijosa-Valsero, M., Molina, R., Montras, A., Muller, M., and Bayona, J., Decontamination of Waterborne Chemical Pollutants by Using Atmospheric Pressure Nonthermal Plasma: A Review, Environ. Technol. Rev, vol. 3, pp. 71-91,2014.

  9. Hontanon, E., Palomares, J.M., Stein, M., Guo, X., Engeln, R., Nirschl, H., and Kruis, F.E., The Transition from Spark to Arc Discharge and Its Implications with Respect to Nanoparticle Production, J. Nanoparticle Res., vol. 15, no. 1957, pp. 2-19, 2013.

  10. Jones, T., Electrohydrodynamically Enhanced Heat Transfer in Liquids: A Review, in Advances in Heat Transfer, T.F. Irvine and J.P. Hartnett, Eds., Academic Press, pp. 107-148, 1979.

  11. Joshi, R. and Thagard, S., Streamer-Like Electrical Discharges in Water: Part II. Environmental Applications, Plasma Chem. Plasma Proc., vol. 33, pp. 17-49, 2013.

  12. Lindsay, A., Anderson, C., Slikboer, E., Shannon, S., and Graves, D., Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets, J. Phys. D, vol. 48, no. 42, p. 424007, 2015.

  13. Plotnikov, V., Diaz, G., and Leal-Quiros, E., Effects of Pulse Frequency on Liquid Phase Pulsed Corona Plasma Discharge in Ethanol, 2nd Thermal and Fluid Eng. Conf, Paper No. TFEC-IWHT2017-18242, pp. 2061-2067, 2017.

  14. Sahebi, M. and Alemrajabi, A.A., Electrohydrodynamic (EHD) Enhancement of Natural Convection Heat Transfer from a Heated Inclined Plate, J. Enhanced Heat Transf., vol. 21, no. 1, pp. 51-61, 2014.

  15. Saito, G. and Akiyama, T., Nanomaterial Synthesis Using Plasma Generation in Liquid, Hindawi J. Nanomater, pp. 1-21,2015.

  16. Saksono, N., Ariawan, B., and Bismo, S., Hydrogen Production System Using Non-Thermal Plasma Electrolysis in Glycerol-Koh Solution, Int. J. Technol., vol. 1, pp. 8-15, 2012.

  17. Sato, M., Degradation of Organic Compounds in Water by Plasma, Int. J. Plasma Environ. Sci. Technol, vol. 3, pp. 8-14, 2009.

  18. Shih, K., Analysis of External Pressure and Solution Temperature and Conductivity on Pulsed Electrical Discharge in Aqueous Solution or Bubbles, PhD, Florida State University, 2010.

  19. Sun, B., Sato, M., and Clements, J., Use of a Pulsed High-Voltage Discharge for Removal of Organic Compounds in Aqueous Solution, J. Phys. D, vol. 32, pp. 1908-1915, 1999.

  20. Sunka, P., Pulse Electrical Discharges in Water and Their Applications, Phys. Plasmas, vol. 8, pp. 2587-2594,2001.

  21. Thagard, S., Fisher, E., Prieto, G., Takashima, K., and Mizuno, A., Production of Hydrogen from Sugar by a Liquid Phase Electrical Discharge, Int. J. Plasma Environ. Sci. Technol., vol. 4, pp. 163-168, 2010.

  22. Thagard, S., Prieto, G., Takashima, K., and Mizuno, A., Identification of Gas-Phase Byproducts Formed during Electrical Discharges in Liquid Fuels, IEEE Trans. Plasma Sci, vol. 40, pp. 2106-2111, 2012.

  23. Wang, C.H., Feng, Y.Y., Yue, K., and Zhang, X.X., Discontinuous Finite Element Method for Combined Radiation-Conduction Heat Transfer in Participating Media, Int. Commun. Heat Mass Transf., vol. 108, p. 104287,2019.

  24. Yan, Y.Y., Zhang, H.B., and Hull, J.B., Numerical Modeling of Electrohydrodynamic (EDH) Effect on Natural Convection in an Enclosure, Numer. Heat Transf., Part A, vol. 46, no. 5, pp. 453-471, 2004.

  25. Yang, Y., Cho, Y., and Fridman, A., Plasma Discharge in Liquid. Water Treatment and Applications, Boca Raton, FL: CRC Press, 2012.

  26. Zakharov, A.I., Persiantsev, I.G., Pis'menny, V.D., Rodin, A.V., and Starostin, A.N., A Contribution to the Theory of Streamer Breakdown, J. Appl. Mech. Tech. Phys, vol. 14, no. 1, pp. 45-52, 1973.

  27. Zhang, J., Chen, J., and Li, X., Remove of Phenolic Compounds in Water by Low-Temperature Plasma: A Review of Current Research, J. Water Resour. Protec., vol. 2, pp. 99-109, 2009.