Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Uncertainty Quantification
Импакт фактор: 3.259 5-летний Импакт фактор: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Печать: 2152-5080
ISSN Онлайн: 2152-5099

Свободный доступ

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2014006135
pages 455-477

ANALYSIS OF VARIANCE-BASED MIXED MULTISCALE FINITE ELEMENT METHOD AND APPLICATIONS IN STOCHASTIC TWO-PHASE FLOWS

Jia Wei
Department of Mathematics, Texas A&M University, College Station, Texas 77840; Computational Science & Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
Guang Lin
Computational Science & Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Department of Mathematics, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
Lijian Jiang
College of Mathematics and Econometrics, Hunan University, China
Yalchin Efendiev
Department of Mathematics and Institute for Scientific Computation (ISC), Texas A&M University, College Station, TX 77840, USA; Multiscale Model Reduction Laboratory, North-Eastern Federal University, Yakutsk, Russia, 677980

Краткое описание

The stochastic partial differential systems have been widely used to model physical processes, where the inputs involve large uncertainties. Flows in random and heterogeneous porous media is one of the cases where the random inputs (e.g., permeability) are often modeled as a stochastic field with high-dimensional random parameters. To treat the high dimensionality and heterogeneity efficiently, model reduction is employed in both stochastic space and physical space. An analysis of variance (ANOVA)-based mixed multiscale finite element method (MsFEM) is developed to decompose the high-dimensional stochastic problem into a set of lower-dimensional stochastic subproblems, which require much less computational complexity and significantly reduce the computational cost in stochastic space, and the mixed MsFEM can capture the heterogeneities on a coarse grid to greatly reduce the computational cost in the spatial domain. In addition, to enhance the efficiency of the traditional ANOVA method, an adaptive ANOVA method based on a new adaptive criterion is developed, where the most active dimensions can be selected to greatly reduce the computational cost before conducting ANOVA decomposition. This novel adaptive criterion is based on variance-decomposition method coupled with sparse-grid probabilistic collocation method or multilevel Monte Carlo method. The advantage of this adaptive criterion lies in its much lower computational overhead for identifying the active dimensions and interactions. A number of numerical examples in two-phase stochastic flows are presented and demonstrate the accuracy and performance of the adaptive ANOVA-based mixed MsFEM.


Articles with similar content:

LOW-COST MULTI-DIMENSIONAL GAUSSIAN PROCESS WITH APPLICATION TO UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 4
Guang Lin, Bledar A. Konomi
TRANSITIONAL ANNEALED ADAPTIVE SLICE SAMPLING FOR GAUSSIAN PROCESS HYPER-PARAMETER ESTIMATION
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 4
Alfredo Garbuno-Inigo, F. A. DiazDelaO, Konstantin M. Zuev
A GRADIENT-BASED SAMPLING APPROACH FOR DIMENSION REDUCTION OF PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Miroslav Stoyanov, Clayton G. Webster
A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 1
Ajay Jasra, Yan Zhou, Kengo Kamatani, Kody J. H. Law
BIAS MINIMIZATION IN GAUSSIAN PROCESS SURROGATE MODELING FOR UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 4
Vadiraj Hombal, Sankaran Mahadevan