Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Uncertainty Quantification
Импакт фактор: 3.259 5-летний Импакт фактор: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Печать: 2152-5080
ISSN Онлайн: 2152-5099

Свободный доступ

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2012004074
pages 397-412

INTERACTIVE VISUALIZATION OF PROBABILITY AND CUMULATIVE DENSITY FUNCTIONS

Kristin Potter
NREL
Mike Kirby
Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, 84112, USA
Dongbin Xiu
Ohio Eminent Scholar Department of Mathematics The Ohio State University Columbus, Ohio 43210, USA
Chris R. Johnson
Scientific Computing and Imaging Institute, School of Computing University of Utah Salt Lake City, Utah 84112, USA

Краткое описание

The probability density function (PDF), and its corresponding cumulative density function (CDF), provide direct statistical insight into the characterization of a random process or field. Typically displayed as a histogram, one can infer probabilities of the occurrence of particular events. When examining a field over some two-dimensional domain in which at each point a PDF of the function values is available, it is challenging to assess the global (stochastic) features present within the field. In this paper, we present a visualization system that allows the user to examine two-dimensional data sets in which PDF (or CDF) information is available at any position within the domain. The tool provides a contour display showing the normed difference between the PDFs and an ansatz PDF selected by the user and, furthermore, allows the user to interactively examine the PDF at any particular position. Canonical examples of the tool are provided to help guide the reader into the mapping of stochastic information to visual cues along with a description of the use of the tool for examining data generated from an uncertainty quantification exercise accomplished within the field of electrophysiology.


Articles with similar content:

VISUALIZATION OF COVARIANCE AND CROSS-COVARIANCE FIELDS
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 1
Dongbin Xiu, Mike Kirby, Chao Yang
ROBUSTNESS OF THE SOBOL' INDICES TO DISTRIBUTIONAL UNCERTAINTY
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 5
Joseph Hart, Pierre A. Gremaud
PRIOR AND POSTERIOR ROBUST STOCHASTIC PREDICTIONS FOR DYNAMICAL SYSTEMS USING PROBABILITY LOGIC
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Alexandros Taflanidis, James L. Beck
ADVANCED STATISTICAL ANALYSIS OF THE COLLISION OF WALL JET WITH A BOUNDARY LAYER
First Thermal and Fluids Engineering Summer Conference, Vol.3, 2015, issue
Andre R. R. Silva, Jorge M. M. Barata, Miguel R. Oliveira Panão
AN ANALYSIS OF PRIOR INFORMATION IN BAYESIAN TOMOGRAPHIC RECONSTRUCTION
First Thermal and Fluids Engineering Summer Conference, Vol.4, 2015, issue
Paul J. Hadwin, Samuel J. Grauer, Kyle J. Daun