Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Uncertainty Quantification
Импакт фактор: 3.259 5-летний Импакт фактор: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Печать: 2152-5080
ISSN Онлайн: 2152-5099

Свободный доступ

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.v1.i1.10
pages 1-17

MARGINALIZATION OF UNINTERESTING DISTRIBUTED PARAMETERS IN INVERSE PROBLEMS-APPLICATION TO DIFFUSE OPTICAL TOMOGRAPHY

Ville Kolehmainen
Department of Applied Physics University of Kuopio P.O.B. 1627, FI-70211 Kuopio, Finland
Tanja Tarvainen
Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Simon R. Arridge
Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
Jari P. Kaipio
Department of Mathematics, University of Auckland, New Zealand; and Department of Physics and Mathematics, University of Eastern Finland

Краткое описание

With inverse problems there are often several unknown distributed parameters of which only one may be of interest. Since assigning incorrect fixed values to the uninteresting parameters usually leads to a severely erroneous model, one is forced to estimate all distributed parameters simultaneously. This may increase the computational complexity of the problem significantly. In the Bayesian framework, all unknowns are generally treated as random variables and estimated simultaneously and all uncertainties can be modeled systematically. Recently, the approximation error approach has been proposed for handling uncertainty and model-reduction-related errors in the models. In this approach approximate marginalization of these errors is carried out before the estimation of the interesting variables. In this paper we discuss the adaptation of the approximation error approach to the marginalization of uninteresting distributed parameters. As an example, we consider the marginalization of scattering coefficient in diffuse optical tomography.


Articles with similar content:

EMBEDDED MODEL ERROR REPRESENTATION FOR BAYESIAN MODEL CALIBRATION
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 4
Habib N. Najm, Xun Huan, Khachik Sargsyan
TIME AND FREQUENCY DOMAIN METHODS FOR BASIS SELECTION IN RANDOM LINEAR DYNAMICAL SYSTEMS
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 6
John D. Jakeman, Roland Pulch
A COMBINED MONTE CARLO AND FVM MODEL FOR ONE-DIMENSIONAL HEAT TRANSFER IN POLYMER FOAMS
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Prabal Talukdar, Abhishek Sit
ESTMATION OF ARBITARY REFRACTIVE INDEX DISTRIBUTION IN A ONEDIMENSINOAL SEMITRANSPARENT GRADED INDEX MEDIUM
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2010, issue
Denis Lemonnier, Amin Namjoo, Vital Le Dez, S. M. Hosseini Sarvari
OPTIMIZATION-BASED SAMPLING IN ENSEMBLE KALMAN FILTERING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 4
Alexander Bibov, Heikki Haario, Antti Solonen, Johnathan M. Bardsley