Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Uncertainty Quantification
Импакт фактор: 3.259 5-летний Импакт фактор: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Печать: 2152-5080
ISSN Онлайн: 2152-5099

Свободный доступ

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2019027245
pages 321-330


Ajay Jasra
Department of Statistics & Applied Probability, National University of Singapore, Singapore
Kody J.H. Law
School of Mathematics, University of Manchester, Manchester, M139PL, UK
Yi Xu
Department of Statistics & Applied Probability, National University of Singapore, Singapore

Краткое описание

In this article we consider sequential inference on partially observed deterministic systems. Examples include: inference on the expected position of a dynamical system, with random initial position, or Bayesian static parameter inference for unobserved partial differential equations (PDEs), both associated to sequentially observed real data. Such statistical models are found in a wide variety of real applications, including weather prediction. In many practical scenarios one must discretize the system, but even under such discretization, it is not possible to compute the associated expected value (integral) required for inference. Such quantities are then approximated by Monte Carlo methods, and the associated cost to achieve a given level of error in this context can substantially be reduced by using multilevel Monte Carlo (MLMC). MLMC relies upon exact sampling of the model of interest, which is not always possible. We devise a sequential Monte Carlo (SMC) method, which does not require exact sampling, to leverage the MLMC method. We prove that for some models with n data points, that to achieve a mean square error (MSE) in estimation of O( 2) (for some 0 < < 1) our MLSMC method has a cost of O(n 2 -2) versus an SMC method that just approximates the most precise discretiztion of O(n 2 -3). This is illustrated on two numerical examples.


  1. Law, K., Stuart, A., and Zygalakis, K., Data Assimilation, Cham, Switzerland: Springer, 2015.

  2. Kantas, N., Beskos, A., and Jasra, A., Sequential Monte Carlo Methods for High-Dimensional Inverse Problems: A Case Study for the Navier-Stokes Equations, SIAM/ASA J. Uncertain. Quantific., 2(1):464-489, 2014.

  3. Beskos, A., Crisan, D., and Jasra, A., On the Stability of Sequential Monte Carlo Methods in High Dimensions, Annals Appl. Prob., 24(4):1396-1445,2014.

  4. Oliver, D.S., Reynolds, A.C., and Liu, N., Inverse Theory for Petroleum Reservoir Characterization and History Matching, Cambridge: Cambridge University Press, 2008.

  5. Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G., Data Assimilation in the Geosciences: An Overview of Methods, Issues, and Perspectives, Wiley Interdisc. Rev.: Climate Change, 9(5):e535,2018.

  6. Paulin, D., Jasra, A., Crisan, D., and Beskos, A., On Concentration Properties of Partially Observed Chaotic Systems, Adv. Appl. Prob, 50(2):440-479,2018.

  7. Paulin, D., Jasra, A., Crisan, D., and Beskos, A., Optimization-Based Methods for Partially Observed Chaotic Systems, Foun-dations Comput. Mathemat, pp. 1-75,2017. DOI: s10208-018-9388-x.

  8. Giles, M.B., Multilevel Monte Ccarlo Path Simulation, Oper. Res., 56(3):607-617, 2008.

  9. Giles, M.B., Multilevel Monte Carlo Methods, in Monte Carlo and Quasi-Monte Carlo Methods 2012, Springer, pp. 83-103, 2013.

  10. Heinrich, S., Multilevel Monte Carlo Methods, in Large-Scale Scientific Computing Methods, S. Margenov, J. Wasniewski, and P. Yalamov, Eds., Berlin: Springer, 2001.

  11. Beskos, A., Jasra, A., Law, K., Tempone, R., and Zhou, Y., Multilevel Sequential Monte Carlo Samplers, Stochastic Proc. Appl., 127(5):1417-1440, 2017.

  12. Hoang, V.H., Schwab, C., and Stuart, A.M., Complexity Analysis of Accelerated MCMC Methods for Bayesian Inversion, Inverse Probl., 29(8):085010,2013.

  13. Robert, C. and Casella, G., Monte Carlo Statistical Methods, Berlin: Springer Science & Business Media, 2013.

  14. Chopin, N., A Sequential Particle Filter Method for Static Models, Biometrika, 89(3):539-552, 2002.

  15. Del Moral, P., Doucet, A., and Jasra, A., Sequential Monte Carlo Samplers, J. Royal Stat. Soc.: Ser. B, 68(3):411-436, 2006.

  16. Del Moral, P., Feynman-Kac Formulae, in Feynman-Kac Formulae, Berlin: Springer, pp. 47-93, 2004.