Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Uncertainty Quantification
Импакт фактор: 3.259 5-летний Импакт фактор: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Печать: 2152-5080
ISSN Онлайн: 2152-5099

Свободный доступ

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2015012623
pages 569-583

ROBUSTNESS OF WILKS' CONSERVATIVE ESTIMATE OF CONFIDENCE INTERVALS

Jan Peter Hessling
SP Technical Research Institute of Sweden, Measurement Technology, Box 857, SE-50115 Boras, Sweden
Jeffrey Uhlmann
University of Missouri−Columbia, Department of Computer Science, 201 EBW, Columbia, Missouri 65211, USA

Краткое описание

The striking generality and simplicity of Wilks' method has made it popular for quantifying modeling uncertainty. A conservative estimate of the confidence interval is obtained from a very limited set of randomly drawn model sample values, with probability set by the assigned so-called stability. In contrast, the reproducibility of the estimated limits, or robustness, is beyond our control as it is strongly dependent on the probability distribution of model results. The inherent combination of random sampling and faithful estimation in Wilks' approach is here shown to often result in poor robustness. The estimated confidence interval is consequently not a well-defined measure of modeling uncertainty. To remedy this deficiency, adjustments of Wilks' approach as well as alternative novel, effective but less known approaches based on deterministic sampling are suggested. For illustration, the robustness of Wilks' estimate for uniform and normal model distributions are compared.

Ключевые слова: propagation, evaluation, uncertainty, modeling, sampling

Articles with similar content:

OPTIMIZATION-BASED SAMPLING IN ENSEMBLE KALMAN FILTERING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 4
Alexander Bibov, Heikki Haario, Antti Solonen, Johnathan M. Bardsley
PARALLEL ADAPTIVE MULTILEVEL SAMPLING ALGORITHMS FOR THE BAYESIAN ANALYSIS OF MATHEMATICAL MODELS
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 3
Sai Hung Cheung, Ernesto Prudencio
A GENERAL FRAMEWORK FOR ENHANCING SPARSITY OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Xiaoliang Wan, Huan Lei, Xiu Yang, Lin Lin
Modification of Fuzzy c-Means Method Using a Nonlinear Vector Criterion
Journal of Automation and Information Sciences, Vol.42, 2010, issue 12
Oleg B. Blyuss , Elena M. Kiseleva, Sergey A. Pichugov , Anatoliy F. Bulat
REFINED LATINIZED STRATIFIED SAMPLING: A ROBUST SEQUENTIAL SAMPLE SIZE EXTENSION METHODOLOGY FOR HIGH-DIMENSIONAL LATIN HYPERCUBE AND STRATIFIED DESIGNS
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 1
Michael D. Shields