Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
SJR: 0.19 SNIP: 0.341 CiteScore™: 0.43

ISSN Печать: 1093-3611
ISSN Онлайн: 1940-4360

Выпуски:
Том 23, 2019 Том 22, 2018 Том 21, 2017 Том 20, 2016 Том 19, 2015 Том 18, 2014 Том 17, 2013 Том 16, 2012 Том 15, 2011 Том 14, 2010 Том 13, 2009 Том 12, 2008 Том 11, 2007 Том 10, 2006 Том 9, 2005 Том 8, 2004 Том 7, 2003 Том 6, 2002 Том 5, 2001 Том 4, 2000 Том 3, 1999 Том 2, 1998 Том 1, 1997

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.2019030409
pages 165-179

HIGH-TEMPERATURE PYROLYSIS OF PROPANE AND METHANE − THE SHOCK TUBE INVESTIGATION

Mikhail V. Doroshko
A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus

Краткое описание

Using laser light extinction and emission of intermediate radicals C2 and CH, the pyrolysis of propane and methane was investigated by a shock tube technique. The experiments were carried out with the initial mixtures of 4% C3H8 + 96% Ar and 4% CH4 + 96% Ar in the temperature ranges 2100-3400 K and 2600-3700 K behind the reflected shock wave, respectively. The kinetic characteristics of the pyrolysis process − temperature profiles of the soot particle yield and the induction time of soot inception were determined. It is shown that the maximum yield in propane is observed in the interval of 2500-2600 K. The increase in the soot yield with temperature is typical of methane throughout the entire range investigated. As follows from the experimental data obtained, the temperature dependence of the induction time corresponds to the Arrhenius-like law.
Samples of the materials deposited on high-temperature decomposition were analyzed by the electron diffraction method, as well as using a transmission electron microscope. It is shown that the finely dispersed carbon particles formed in the pyrolysis of the propane-argon mixture have a predominantly amorphous structure, whereas in the case of the methane-argon mixture the presence of individual crystalline inclusions is noted.

ЛИТЕРАТУРА

  1. Agafonov, G.L., Borisov, A.A., Smirnov, V.N., Troshin, K.Ya., Vlasov, P.A., and Warnatz, J., Soot Formation during Pyrolysis of Methane and Rich Methane/Oxygen Mixtures behind Reflected Shock Waves, Combust. Sci. Technol., vol. 180, nos. 10-11, pp. 1876-1899, 2008.

  2. Agafonov, G.L., Smirnov, V.N., and Vlasov, P.A., A Shock-Tube and Modeling Study of Soot Formation during Pyrolysis of Propane, Propane/Toluene and Rich Propane/Oxygen Mixtures, Combust. Sci. Technol., vol. 182, nos. 11-12, pp. 1645-1671, 2010.

  3. Agafonov, G.L., Smirnov, V.N., and Vlasov, P.A., Shock Tube and Modeling Study of Soot Formation during the Pyrolysis and Oxidation of a Number of Aliphatic and Aromatic Hydrocarbons, Proc. Combust. Inst., vol. 33, no. 1, pp. 625-632, 2011.

  4. Bhaskaran, K.A. and Roth, P., The Shock Tube as Wave Reactor for Kinetic Studies and Material System, Prog. Energy Combust. Sci., vol. 28, no. 2, pp. 151-192, 2002.

  5. Bockhorn, H., Geitlinger, H., Jungfleisch, B., Lehre, Th., Schon, A., Streibel, Th., and Suntz, R., Progress in Characterization of Soot Formation by Optical Methods, Phys. Chem. Chem. Phys., vol. 4, no. 15, pp. 3780-3793, 2002.

  6. Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, New York: Wiley-Interscience, 1988.

  7. Charalampopoulos, T.T., Morphology and Dynamics of Agglomerated Particulates in Combustion Systems using Light Scattering Techniques, Prog. Energy Combust. Sci., vol. 18, no. 1, pp. 13-45, 1992.

  8. Deppe, J., Emelianov, A., Eremin, A., and Wagner, H.Gg., Formation of Carbon Nanoparticle in Carbon Suboxide Pyrolysis behind Shock Waves, Z. Phys. Chem., vol. 216, no. 5, pp. 641-658, 2002.

  9. Deppe, J., Emelianov, A., Eremin, A., Jander, H., Wagner, H.Gg., and Zaslonko, I., Carbon Particle Formation and Decay in Two-Step Pyrolysis of Carbon Suboxide behind Shock Waves, Proc. Combust. Inst., vol. 28, no. 2, pp. 2515-2522, 2000.

  10. Doroshko, M.V., Qualitative and Quantitative Investigation of Shock Tube Thermal Decomposition of Acetylene, High Temp. Mater. Process., vol. 22, no. 4, pp. 259-271, 2018.

  11. Emelianov, A., Eremin, A., Gurentsov, E., Makeich, A., Jander, H., Wagner, H.Gg., Roth, P., and Starke, R., Time and Temperature Dependence of Carbon Particle Growth in Various Shock Wave Pyrolysis Processes, Proc. Combust. Inst., vol. 30, no. 1, pp. 1433.

  12. Emelianov, A., Eremin, A., Jander, H., and Wagner, H.Gg., To the Temperature Dependence of Carbon Particle Formation in Shock Wave Pyrolysis Processes, Z. Phys. Chem., vol. 217, no. 7, pp. 893-910, 2003.

  13. Emelianov, A., Eremin, A., Jander, H., Wagner, H.Gg., and Borchers, Ch., Spectral and Structural Properties of Carbon Nanoparticle Forming in C3O2 and C2H2 Pyrolysis behind Shock Waves, Proc. Combust. Inst., vol. 29, no. 2, pp. 2351-2357, 2002.

  14. Eremin, A., Gurentsov, E., and Mikheyeva, E., Experimental Study of Molecular Hydrogen Influence on Carbon Particle Growth in Acetylene Pyrolysis behind Shock Waves, Combust. Flame, vol. 159, no. 12, pp. 3607-3615, 2012.

  15. Eremin, A.V., Formation of Carbon Nanoparticles from the Gas Phase in Shock Wave Pyrolysis Processes, Prog. Energy Combust. Sci., vol. 38, no. 1, pp. 1-40, 2012.

  16. Frenklach, M. and Wang, H., Detailed Modeling of Soot Particle Nucleation and Growth, Symp. (Int.) on Combust., vol. 23, no. 1, pp. 1559-1566, 1991.

  17. Frenklach, M. and Warnatz, J., Detailed Modeling of PAH Profiles in a Sooting Low-Pressure Acetylene Flame, Combust. Sci. Technol., vol. 51, no. 4, pp. 265-283, 1987.

  18. Frenklach, M., Reaction Mechanism of Soot Formation in Flames, Phys. Chem. Chem. Phys., vol. 4, no. 11, pp. 2028-2037, 2002.

  19. Gaydon, A.G. and Hurle, I.R., The Shock Tube in High Temperature Chemical Physics, London: Chapman and Hall, 1963.

  20. Gaydon, A.G., The Spectroscopy of Flames, London: Chapman and Hall, 1974.

  21. Kellerer, H., Bauer, H.-J., and Wittig, S., Soot Formation from Rich Hydrocarbon Oxidation under Elevated Pressure Conditions, Proc. of the 20th Int. Symp. on Shock Waves, Pasadena, CA, pp. 947-952, 1995.

  22. Kellerer, H., Koch, R., and Wittig, S., Measurements of the Growth and Coagulation of Soot Particles in a High-Pressure Shock Tube, Combust. Flame, vol. 120, nos. 1-2, pp. 188-199, 2000.

  23. Kellerer, H., Muller, A., Bauer, H.-J., and Wittig, S., Soot Formation in a Shock Tube under Elevated Pressure Conditions, Combust. Sci. Technol., vol. 113, no. 1, pp. 67-80, 1996.

  24. Kerker, M., The Scattering of Light, New York: Academic Press, 1969.

  25. Kern, R.D. and Xie, K., Shock Tube Studies of Gas Phase Reactions Preceding the Soot Formation Process, Prog. Energy Combust. Sci., vol. 17, no. 3, pp. 191-210, 1991.

  26. Kohse-Hoinghaus, K., Laser Techniques for the Quantitative Detection of Reactive Intermediates in Combustion Systems, Prog. Energy Combust. Sci., vol. 20, no. 3, pp. 203-279, 1994.

  27. Krestinin, A.V., Detailed Modeling of Soot Formation in Hydrocarbon Pyrolysis, Combust. Flame, vol. 121, no. 3, pp. 513-524, 2000.

  28. Krestinin, A.V., Kislov, M.B., Raevskii, A.V., Kolesova, O.I., and Stesik, L.N., On the Mechanism of Soot Particle Formation, Kinet. Catal., vol. 41, no. 1, pp. 90-98, 2000.

  29. Krestinin, A.V., Polyyne Model of Soot Formation Process, Symp. (Int.) on Combust., vol. 27, no. 1, pp. 1557-1563, 1998.

  30. Leschevich, V.V., Martynenko, V.V., Penyazkov, O.G., Sevrouk, K.L., and Shabunya, S.I., Auto-Ignitions of a Methane/Air Mixture at High and Intermediate Temperatures, Shock Waves, vol. 26, no. 5, pp. 657-672, 2016.

  31. Martynenko, V.V., Penyazkov, O.G., Ragotner, K.A., and Shabunya, S.I., High-Temperature Ignition of Hydrogen and Air at High Pressures Downstream of the Reflected Shock Wave, J. Eng. Phys. Thermophys., vol. 77, no. 4, pp. 785-793, 2004.

  32. Mullins, J. and Williams, A., The Optical Properties of Soot: A Comparison between Experimental and Theoretical Values, Fuel, vol. 66, no. 2, pp. 277-280, 1987.

  33. Muller, A. and Wittig, S., Influence of Temperature and Pressure on Soot Formation in a Shock Tube under High Pressure Conditions, Proc. of the 18th Int. Symp. on Shock Waves, Sendai, Japan, pp. 759-764, 1991.

  34. Soloukhin, R.I., Shock Waves and Detonation in Gases, Baltimore: Mono Book Corp., 1966.

  35. Stagg, B.J. and Charalampopoulos, T.T., Refractive Indices of Pyrolytic Graphite, Amorphous Carbon, and Flame Soot in the Temperature Range 25 to 600 C, Combust. Flame, vol. 94, no. 4, pp. 381-396, 1993.

  36. Starke, R. and Roth, P., Soot Particle Sizing by LII during Shock Tube Pyrolysis of C6H6, Combust. Flame, vol. 127, no. 4, pp. 2278-2285, 2001.

  37. Tanke, D., Soot Formation from Hydrocarbon Pyrolysis behind Shock Waves, Ph.D. Universitat Gottingen, Gottingen, 1995.

  38. Vlasov, P.A. and Warnatz, J., Detailed Kinetic Modeling of Soot Formation in Hydrocarbon Pyrolysis behind Shock Waves, Proc. Combust. Inst., vol. 29, no. 2, pp. 2335-2341, 2002.

  39. Wang, H. and Frenklach, M., A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames, Combust. Flame, vol. 110, nos. 1-2, pp. 173-221, 1997.

  40. Wang, H., Formation of Nascent Soot and Other Condensed-Phase Materials in Flames, Proc. Combust. Inst., vol. 33, no. 1, pp. 41-67, 2011.

  41. Warnatz, J., Maas, U., and Dibble, R., Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Berlin Heidelberg: Springer-Verlag, 2006.

  42. Woiki, D., Giesen, A., and Roth, P., Time-Resolved Laser-Induced Incandescence for Soot Particle Sizing during Acetylene Pyrolysis behind Shock Waves, Proc. Combust. Inst., vol. 28, no. 2, pp. 2531-2537, 2000.

  43. Zhao, H. and Ladommatos, N., Optical Diagnostics for Soot and Temperature Measurement in Diesel Engines, Prog. Energy Combust. Sci., vol. 24, no. 3, pp. 221-255, 1998.


Articles with similar content:

QUALITATIVE AND QUANTITATIVE INVESTIGATION OF SHOCK TUBE THERMAL DECOMPOSITION OF ACETYLENE
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.22, 2018, issue 4
Mikhail V. Doroshko
COMBUSTION PECULIARITIES OF ADN AND ADN-BASED MIXTURES
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
Valery V. Serushkin, Anton I. Levshenkov, Valery P. Sinditskii, A. E. Fogelzang, V. I. Kolesov, Viacheslav Yu. Egorshev
EXCITED SPECIES AND C-ATOM DENSITY DOWNSTREAM AN Ar PLASMA TORCH WITH OLEFINS (CH4, CF4) IN IMPURITY
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.1, 1997, issue 4
Jacques Amouroux, S. Al Ayoubi, Andre Ricard, S. Cavadias
SYNTHESIS AND PROPERTIES OF FULLERENE CONTAINED FILMS IN RF PLASMA
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.9, 2005, issue 2
V. V. Azharonok, V. D. Shimanovich, L. I. Filatova
SENSITIVITY OF TEMPERATURE AND CONCENTRATION MEASUREMENTS IN HOT GASES FROM FTIR EMISSION SPECTROSCOPY
ICHMT DIGITAL LIBRARY ONLINE, Vol.15, 2001, issue
Jean-Pierre Martin, Juan-Carlos Rolon, Laurent Brenez, Anouar Soufiani