Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
SJR: 0.137 SNIP: 0.341 CiteScore™: 0.43

ISSN Печать: 1093-3611
ISSN Онлайн: 1940-4360

Выпуски:
Том 24, 2020 Том 23, 2019 Том 22, 2018 Том 21, 2017 Том 20, 2016 Том 19, 2015 Том 18, 2014 Том 17, 2013 Том 16, 2012 Том 15, 2011 Том 14, 2010 Том 13, 2009 Том 12, 2008 Том 11, 2007 Том 10, 2006 Том 9, 2005 Том 8, 2004 Том 7, 2003 Том 6, 2002 Том 5, 2001 Том 4, 2000 Том 3, 1999 Том 2, 1998 Том 1, 1997

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.2019030506
pages 319-328

DISPERSED PHASE VELOCITY IN A HIGH-TEMPERATURE GAS FLOW

Dmitry V. Nesterovich
A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of the Republic of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus
Oleg G. Penyazkov
Laboratory of Physical-Chemical Hydrodynamics, Department of Physics and Chemistry of Nonequilibrium Media A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk, Belarus
Yu. A. Stankevich
A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of the Republic of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus
M. S. Tretyak
A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of the Republic of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus
Vladimir V. Chuprasov
A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of the Republic of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus
Ilya N. Shatan
A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., Minsk, 220072, Republic of Belarus

Краткое описание

At the present stage of space research, one of the most important tasks is the experimental study of heat-shielding materials of a descent spacecraft in conditions of strong dustiness of the atmosphere. To study the physicochemical processes occurring on the surface of a heat-shielding material, when modeling the entry of a spacecraft into the planet's atmosphere, it is necessary to create hypersonic high-enthalpy heterogeneous flows with constant monitoring of gas-dynamic parameters. The aim of this work was to obtain the maximum possible velocity of the heterogeneous phase at the Luch-22 setup, which is based on the electric-arc gas heater of a linear scheme with magnetogas-dynamic stabilization of the jet. A numerical simulation was carried out to determine the output nozzle geometry and the position for injection the dispersed phase into the main flow. As a dispersed phase, SiO2 particles with a determining diameter of 14.2 μm were used. A high-speed CCD camera with image intensifier with flash synchronization of a two-pulse Nd:YAG laser with Q-switching was used to record the velocity of particles in the plasma torch stream. Experimental results showed that with the selected geometry of the nozzle block and the position of the injection channel of particles, the velocity of the dispersed phase in the flow reaches 2200-2300 m/s. It is shown that when designing a nozzle unit, it is necessary to take into account the size and material of the particles of the dispersed phase.

ЛИТЕРАТУРА

  1. Bugel, M., Reyner, P., and Smith, A., Review of European Aerodynamics and Aerothermodynamics Capabilities for Sample Return Missions, Proc. of 6th European Symp. on Aerodynamics for Space Vehicles, Versailles, France, ESA SP-658, November, 2008.

  2. Bugel, M., Reyner, P., and Smith, A., Survey of European and Major ISC Facilities for Supporting Mars and Sample Return Mission Aerothermodynamics and Tests Required for Thermal Protection System and Dynamic Stability, Int. J. Aerospace Eng., vol. 2011, Article ID 937629, 2011.

  3. Klishin, A.V., Chuprasov, V.V., Stankevich, Yu.A., Tretyak, M.S., and Nikitin, A.M., Experimental Investigation of Specimens of the Construction of Heat Protection on an EDPG Plasmatron, in Heat and Mass Transfer-2015, Collection of Papers, Minsk: A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, pp. 223-228, 2016a.

  4. Klishin, A.V., Penyazkov, O.G., and Shatran, I.N., Method and Results of Investigations of the Hetero-geneous Plasma Jet Parameters of EDPG Plasmatron, in Heat and Mass Transfer-2015, Collection of Papers, Minsk: A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, pp. 217-222, 2016b.

  5. Kreith, F. and Chhabra, R.P. Eds., CRC Handbook of Thermal Engineering. Mechanical and Aerospace Engineering Series, Boca Raton, FL: CRC Press, 2017.

  6. Mazak, V.V., Tretyak, M.S., and Chuprasov, V.V., Study of the Parameters of a Two-Phase Jet and Its Effect on a Barrier, J. Eng. Phys. Thermophys., vol. 52, no. 1, pp. 28-32, 1987.

  7. Sauvage, N., Tran, P., Montois, I., and Pirotais, D., CEA/CESTA and EADS ST Common Approach of Particles Impact Effect on Ablative Material Application to Mars Reentries, Proc. of 5th European Workshop on Thermal Protection Systems and Hot Structures, Noordwijk, Netherlands, May 17-19, 2006.