Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
SJR: 0.137 SNIP: 0.341 CiteScore™: 0.43

ISSN Печать: 1093-3611
ISSN Онлайн: 1940-4360

Выпуски:
Том 24, 2020 Том 23, 2019 Том 22, 2018 Том 21, 2017 Том 20, 2016 Том 19, 2015 Том 18, 2014 Том 17, 2013 Том 16, 2012 Том 15, 2011 Том 14, 2010 Том 13, 2009 Том 12, 2008 Том 11, 2007 Том 10, 2006 Том 9, 2005 Том 8, 2004 Том 7, 2003 Том 6, 2002 Том 5, 2001 Том 4, 2000 Том 3, 1999 Том 2, 1998 Том 1, 1997

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.2019031840
pages 303-312

INFLUENCE OF TEMPERATURE ON HIGH-FIELD INJECTION MODIFICATION OF MIS STRUCTURES WITH THERMAL SiO2 FILMS DOPED WITH PHOSPHORUS

Dmitrii V. Andreev
N.E. Bauman Moscow State Technical University, Kaluga Branch, 2 Bazhenov Str., Kaluga, 248000, Russia
Gennady G. Bondarenko
National Research University Higher School of Economics, 20 Myasnitskaya Str., Moscow, 101000, Russia
Vladimir V. Andreev
Bauman Moscow State Technical University, The Kaluga Branch, 2 Bazhenov Str., Kaluga, 248000, Russia
Vladimir M. Maslovsky
Department of Micro- and Nanoelectronics, Moscow Institute of Physics and Technology (State University), 9 Institutskii Lane, Dolgoprudnyi, Moscow Region, 141700 Russia
Alexander A. Stolyarov
N.E. Bauman Moscow State Technical University, Kaluga Branch, 2 Bazhenov Str., Kaluga, 248000, Russia

Краткое описание

The paper presents a study of the processes of electron trapping in metal-insulator-semiconductor (MIS) structures with gate dielectric based on silicone dioxide doped with phosphorus under high-field Fowler−Nordheim tunnel injection of electrons in a range of temperatures from 293 to 373 K. We have ascertained that the negative charge being trapped in phosphosilicate glass (PSG) consisted of two components with a different energy of the thermal ionization ΔEa1 = 0.2-0.3 eV and ΔEa2 = 1.0-1.2 eV. A part of the charge with a low energy of the thermal ionization virtually drain off at annealing temperature of 473 K for a period of time of 20 min and then the dielectric contains only the thermostable part of the negative charge that can be utilized to correct the threshold voltage of MIS transistors. We have ascertained that an implementation of the high-field tunnel injection of electrons for MIS structures with SO2-PSG gate dielectric has raised not only density of negative charge trapped but also its thermostable component.

ЛИТЕРАТУРА

  1. Andreev, D.V., Bondarenko, G.G., Andreev, V.V., Maslovsky, V.M., and Stolyarov, A.A., Modification of MIS Structures with Thermal SiO2 Films by Phosphorus Diffusion, High Temp. Mater. Process.: An Int. Quart. High-Technol. Plasma Processes, vol. 21, no. 4, pp. 299-307, 2017a.

  2. Andreev, D.V., Bondarenko, G.G., Andreev, V.V., Maslovsky, V.M., and Stolyarov A.A., Modification of MIS Devices by Irradiation and High-Field Electron Injection Treatments, Acta Phys. Pol. A, vol. 132, no. 2, pp. 245-248, 2017b.

  3. Andreev, V.V., Bondarenko, G.G., Maslovsky, V.M., Stolyarov, A.A., and Andreev, D.V., Modification and Reduction of Defects in Thin Gate Dielectric of MIS Devices by Injection-Thermal and Irradiation Treatments, Phys. Status Solidi C, vol. 12, nos. 1-2, pp. 126-130, 2015a.

  4. Andreev, V.V., Bondarenko, G.G., Maslovsky, V.M., Stolyarov, A.A., and Andreev, D.V., Control Current Stress Technique for the Investigation of Gate Dielectrics of MIS Devices, Phys. Status Solidi C, vol. 12, no. 3, pp. 299-303, 2015b.

  5. Andreev, V.V., Maslovsky, V.M., Andreev, D.V., and Stolyarov, A.A., Method of Stress and Measurement Modes for Research of Thin Dielectric Films of MIS Structures, Proc. SPIE, vol. 10224, p. 1022429(1-8), 2016.

  6. Andreev, V.V., Maslovsky, V.M., Andreev, D.V., and Stolyarov, A.A., Charge Effects in Dielectric Films of MIS Structures Being under High-Field Injection of Electrons at Ionizing Radiation, Proc. SPIE, Int. Conf. on Micro- and Nano-Electronics 2018, vol. 11022, p. 1102207(1-7), 2019.

  7. Arnold, D., Cartier, E., and DiMaria, D.J., Theory of High-Field Electron Transport and Impact Ionization in Silicone Dioxide, Phys. Rev. B, vol. 49, no. 15, pp. 10278-10297, 1994.

  8. Balk, P. and Eldridge, J.M., Phosphosilicate Glass Stabilization of FET Devices, Proc. IEEE, vol. 57, pp. 1558-1563, 1969.

  9. Bondarenko, G.G., Andreev, V.V., Drach, V.E., Loskutov, S.A., and Stolyarov, M.A., Study of Temperature Dependence of Positive Charge Generation in Thin Dielectric Film of MOS Structure under High-Fields, Thin Solid Films, vol. 515, pp. 670-673, 2006.

  10. Fanciulli, M., Bonera, E., and Nokhrin, S., Phosphorous-Oxygen Hole Centers in Phosphosilicate Glass Films, Phys. Rev. B, vol. 74, p. 134102, 2006.

  11. Fleetwood, D.M., Border Traps and Bias-Temperature Instabilities in MOS Devices, Microelectron. Reliab, vol. 80, pp. 266-277, 2018.

  12. Hosono, H., Kajihara, K., Hirano, M., and Oto, M., Photochemistry in Phosphorus-Doped Silica Glass by ArF Excimer Laser Irradiation: Crucial Effect of H2 Loading, J. Appl. Phys., vol. 91, pp. 4121-4124, 2002.

  13. Idris, M.I., Weng, M.H., Chan, H.-K., Murphy, A.E., Clark, D.T., Young, R.A.R., Ramsay, E.P., Wright, N.G., and Horsfall, A.B., Instability of Phosphorous Doped SiO2 in 4H-SiC MOS Capacitors at High Temperatures, J. Appl. Phys, vol. 120, p. 214902(1-10), 2016.

  14. Jayawardena, A., Shen, X., Mooney, P.M., and Dhar, S., Mechanism of Phosphorus Passivation of Near-Interface Oxide Traps in 4H-SiC MOS Devices Investigated by CCDLTS and DFT Calculation, Semicond. Sci. Technol., vol. 33, no. 6, p. 065005(1-8), 2018.

  15. Levin, M.N., Tatarintsev, A.V., Makarenko, V.A., and Gitlin, V.R., X-ray or UV Adjustment of MOS Threshold Voltage: Analytical and Numerical Modeling, Russ. Microelectron., vol. 35, no. 5, pp. 329-336, 2006.

  16. Makhavikou, M., Komarov, F.F., Vlasukova, L.A., Milchanin, O.V., and Parkhomenko, I.N., Ion-Beam Synthesis of Zinc-Based Nanoparticles in Si and SiO2, High Temp. Mater. Process.: An Int. Quart. High-Technol. Plasma Processes, vol. 18, no. 4, pp. 255-261, 2014.

  17. Mikhailovskii, I.P., Potapov, P.V., and Epov, A.E., Sign of the Charge Accumulated in Thermal Films of Silicone MIS Structures under High Electric Field Condition, Phys. Stat. Sol. A, vol. 94, pp. 679-685, 1986.

  18. Pacchioni, G., Erbetta, D., Ricci, D., and Fanciulli, M., Electronic Structure of Defect Centers P1, P2, and P4 in P-Doped SiO2, J. Phys. Chem. B, vol. 105, pp. 6097-6102, 2001.

  19. Palumbo, F., Wen, C., Lombardo, S., Pazos, S., Aguirre, F., Eizenberg, M., Hui, F., and Lanza, M., A Review on Dielectric Breakdown in Thin Dielectrics: Silicone Dioxide, High-K, and Layered Dielectrics, Adv. Funct. Mater., vol. 1900657, p. 1900657(1-26), 2019.

  20. Sharma, Y.K., Ahyi, A.C., Issacs-Smith, T., Shen, X., Pantelides, S.T., Zhu, X., and Feldman, L.C., Phos-phorous Passivation of the SiO2/4H-SiC Interface, Solid-State Electronics, vol. 68, pp. 103-107, 2012.

  21. Stesmans, A., Clemer, K., and Afanas'ev, V.V., P-Associated Defects in the High-K Insulators HfO2 and ZrO2 Revealed by Electron Spin Resonance, Phys. Rev. B, vol. 74, p. 125341, 2008.

  22. Strong, A.W., Wu, E.Y., Vollertsen, R., Sune, J., Rosa, G.L., Rauch, S.E., and Sullivan, T.D., Reliability Wearout Mechanisms in Advanced CMOS Technologies, Hoboken, NJ: Wiley, pp. 73-306, 2009.

  23. Yano, H., Kanafuji, N., Osawa, A., Hatayama, T., and Fuyuki, T., Threshold Voltage Instability in 4H-SiC MOSFETs with Phosphorus-Doped and Nitrided Gate Oxides, IEEE Trans. Electron. Devices, vol. 62, no. 2, pp. 324-332, 2015.

  24. Zhang, J.F., Taylor, S., and Eccleston, W., Electron Trap Generation in Thermally Grown SiO2 under Fowler-Nordheim Stress, J. Appl. Phys., vol. 71, no. 2, pp. 725-734, 1992.