Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Plasma Medicine
SJR: 0.271 SNIP: 0.316 CiteScore™: 1.9

ISSN Печать: 1947-5764
ISSN Онлайн: 1947-5772

Plasma Medicine

DOI: 10.1615/PlasmaMed.2020033660
pages 1-13

Germination of Wheat Seeds Exposed to Cold Atmospheric Plasma in Dry and Wet Plasma-Activated Water and Mist

Mohamed El Shaer
Plasma & Energy Applications Research Laboratory, Zagazig, Department of Engineering Physics and Mathematics, Faculty of Engineering, Zagazig University, Zagazig, Egypt
H. El Welily
Plasma & Energy Applications Research Laboratory, Zagazig, Department of Engineering Physics and Mathematics, Faculty of Engineering, Zagazig University, Zagazig, Egypt
A. Zaki
Plasma & Energy Applications Research Laboratory, Zagazig, Department of Engineering Physics and Mathematics, Faculty of Engineering, Zagazig University, Zagazig, Egypt
H. Arafa
Plasma & Energy Applications Research Laboratory, Zagazig, Department of Engineering Physics and Mathematics, Faculty of Engineering, Zagazig University, Zagazig, Egypt
A. ElSebaei
Plasma & Energy Applications Research Laboratory, Zagazig, Department of Engineering Physics and Mathematics, Faculty of Engineering, Zagazig University, Zagazig, Egypt
M. ElDaly
Plasma & Energy Applications Research Laboratory, Zagazig, Department of Engineering Physics and Mathematics, Faculty of Engineering, Zagazig University, Zagazig, Egypt
M. Mobasher
Plasma & Energy Applications Research Laboratory, Zagazig, Department of Engineering Physics and Mathematics, Faculty of Engineering, Zagazig University, Zagazig, Egypt

Краткое описание

We apply different cold atmospheric plasma (CAP) configurations to treat wheat seeds using (1) a direct atmospheric plasma jet (APJ) in the dry form, (2) indirect plasma-activated water (PAW) in the soaked form, and (3) plasma-activated mist (PAMI) in the wet form. Wheat seedling germination parameters including germination potential, germination index, vigor index, and shoot and root lengths are measured for different plasma treatment-time intervals. Seed germination and seedling growth of wheat specimens are enhanced compared to those of untreated controls. Indirect wet PAW and PAMI show higher wheat germination compared to that of dry direct APJ. During plasma treatment, a rise in hydrophilization of seed surface coat is accompanied by increased water uptake of treated seeds. Ozone generated by plasma shows an increase in all discharge conditions, but this increase is reduced for higher relative humidity values in the PAMI mode. During treatment, OH radicals that are generated by APJ increase largely near seed surfaces. Regarding seed germination, PAW shows a larger impact than PAMI. However, PAMI can be considered to be the more practical technique for treating large numbers of seeds at an industrial scale.

ЛИТЕРАТУРА

  1. Food and Agriculture Organization of the United Nations. The future of food and agriculture. Alternative pathways to 2050 (summary version). Rome: FAO; 2018. p. 16-60.

  2. Perlatti B, Forim MR, Zuin VG. Green chemistry, sustainable agriculture and processing systems: ABrazilian overview. Chem Biol Technol Agric. 2014;1(5):1-9.

  3. Puac N, Gherardi M, Shiratani M. Plasma agriculture: A rapidly emerging field. Plasma Proc Polym. 2018;15(2):1700174.

  4. Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K. The potential of cold plasma for safe and sustainable food production. Trends Biotechnol. 2018;36(6):615-26.

  5. Zahoranova A, Henselova M, Hudecova D, Kalinakova B, Kovacik D, Medvecka V, Cernak M. Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Proc. 2016;36(2):397-414.

  6. Perinban S, Orsat V, Raghavan V. Nonthermal plasma-liquid interactions in food processing: A review. Compr Rev Food Sci Food Safety. 2019;18(4):1985-2008.

  7. Shewry PR, Hey SJ. The contribution of wheat to human diet and health. Food Energy Secur. 2015;4(3):178-202.

  8. Dobrin D, Magureanu M, Mandache NB, Ionita M-D. The effect of non-thermal plasma treatment on wheat germination and early growth. Innov Food Sci Emerg Technol. 2015;29:255-60.

  9. Guo Q, Wang Y, Zhang H, Qu G, Wang T, Sun Q, Liang D. Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci Rep. 2017;7(1):16680.

  10. Bahrami N, Bayliss D, Chope G, Penson S, Perehinec T, Fisk ID. Cold plasma: A new technology to modify wheat flour functionality. Food Chem. 2016;202:247-53.

  11. Randeniya LK, de Groot GJJB. Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: A review. Plasma Proc Polym. 2015;12(7):608-23.

  12. Sivachandiran L, Khacef A. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: Combined effect of seed and water treatment. RSC Adv. 2017;7(4):1822-32.

  13. Massines F, Gherardi N, Naude N, Segur P. Glow and townsend dielectric barrier discharge in various atmosphere. Plasma Phys Control Fusion. 2005;47(12B):B577.

  14. El Shaer M, Zaki A, Reda AM, Adel M, Mobasher M, Ali S. Effect of plasma activated mist on breast cancer cells. IEEE Trans Radiat Plasma Med Sci. 2018;2(2):103-8.

  15. Tong JY, He R, Zhang XL, Zhan RT, Chen WW, Yang SZ. Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of Andrographis paniculata. Plasma Sci Technol. 2014;16(3):260-6.

  16. Guo Q, Meng Y, Qu G, Wang T, Yang F, Liang D, Hu S. Improvement of wheat seed vitality by dielectric barrier discharge plasma treatment. Bioelectromagnetics. 2018;39(2):120-31.

  17. Han D. A spectroscopic study of the effect of humidity on the atmospheric pressure helium plasma jets. Curr Appl Phys. 2018;18(11):1375-80.

  18. Judee F, Simon S, Bailly C, Dufour T. Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms. Water Res. 2018;133:47-59.

  19. Kucerova K, Henselova M, Slovakova L, Hensel K. Effects of plasma activated water on wheat: Germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity. Plasma Proc Polym. 2019;16(3):1800131.

  20. Yuan Y, Lee TR. Contact angle and wetting properties. In: Braco G, Host B, editors. Surface Science Techniques Springer Series, Surface Sciences, Volume 51. Berlin, Germany: Springer-Verlag; 2013. p. 3-34.

  21. Bormashenko E, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J Exp Bot. 2015;66(13):4013-21.

  22. Shapira Y, Chaniel G, Bormashenko E. Surface charging by the cold plasma discharge of lentil and pepper seeds in comparison with polymers. Colloids Surf B Biointerfaces. 2018;172:541-4.

  23. Stolarik T, Henselova M, Martinka M, Novak O, Zahoranova A, Cernak M. Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Proc. 2015;35(4):659-76.

  24. Dhayal M, Lee SY, Park SU. Using low-pressure plasma for Chartamus tinctorium L. seed surface modification. Vacuum. 2006;80(5):499-506.

  25. Sera B, Spatenka P, Sery M, Vrchotova N, Hruskova I. Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans Plasma Sci. 2010;38(10):2963-8.


Articles with similar content:

High-Voltage Atmospheric Cold Plasma Treatment of Yeast for Spoilage Prevention
Plasma Medicine, Vol.7, 2017, issue 2
Kevin M. Keener, S. K. Pankaj, Zifan Wan, William Colonna
Effect of Plasma-Activated Water on Soaking, Germination, and Vigor of Erythrina velutina Seeds
Plasma Medicine, Vol.9, 2019, issue 2
Clodomiro Alves Junior, F. L. G. de Menezes, J. de O. Vitoriano, D. L. S. da Silva
FIBRINOGEN ADSORPTION ON PLASMA MODIFIED POLYPROPYLENE FILMS
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.13, 2009, issue 3-4
C. Riccardi, A. Natalello, S. M. Doglia, A. M. Villa, S. Zanini, R. Ziano
Breakdown of Self-Similar Hardening Behavior in Au Nanopillar Microplasticity
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 3-4
Jaime Marian, Jaroslaw Knap
Time-Resolved Laser-Induced Incandescence for Sizing Aerosolized Silver Nanoparticles
First Thermal and Fluids Engineering Summer Conference, Vol.13, 2015, issue
Timothy A. Sipkens, Nigel R. Singh, Kyle J. Daun