Доступ предоставлен для: Guest
Plasma Medicine

Выходит 4 номеров в год

ISSN Печать: 1947-5764

ISSN Онлайн: 1947-5772

SJR: 0.216 SNIP: 0.263 CiteScore™:: 1.4 H-Index: 24

Indexed in

Plasma Seeds: Cold Plasma Accelerates Phaseolus Vulgaris Seed Imbibition, Germination, and Speed of Seedling Growth

Том 10, Выпуск 3, 2020, pp. 139-158
DOI: 10.1615/PlasmaMed.2020036438
Get accessDownload

Краткое описание

Cold atmospheric pressure plasma (CP) can play an important role in agriculture, medicine, chemistry, and biophysical applications. Generated by cold atmospheric pressure He-plasma jet (CPJ), reactive oxygen and nitrogen species (RONS), UV-Vis photons, and high-frequency strong electromagnetic fields with amplitudes of a few kV can interact with Phaseolus vulgaris seeds and plants. Here we show that CPJ accelerates seed imbibition, germination, and radicle growing rates. CPJ induces roughness, corrugation, and poration in Phaseolus vulgaris seed coats. It produces hydrophilization of seed coats and improves the wetting properties of seed surfaces. Magnetic resonance imaging studies show the acceleration of water uptake in P. vulgaris seeds so treated. Understanding the mechanisms of cold plasma interactions with seeds and plants should promote plasma-based technology for plant development control, increased yields and growth rates, and plant protection from pathogens. Our work offers new insight into mechanisms that trigger water transport and absorbance, seed germination, and activation of metabolism by cold plasmas.

ЛИТЕРАТУРА
  1. Fridman G, Brooks AD, Balasubramanian M, Fridman A, Gutsol A, Vasiletz VN. Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Process Polym. 2007;4(4):370-5.

  2. Ito M, Ohta T, Hori M. Plasma agriculture. J Korean Phys Soc. 2012;60(6):937-43.

  3. Misra NN, Schluter O, Cullen PJ. Cold plasma in food and agriculture. Amsterdam: Elsevier, 2016.

  4. Stolarik T, Henselova M, Martinka M, Novak O, Zahoranova A, Cernak M. Effect of low-temperature plasma on the structure of seeds, growth and metabolism of exogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process. 2015;35(4):659-76.

  5. Filipov AK, Fedorov MA, Filipov DA. Method of pre-sowing treatment of plant seeds. Russian patent RU2293456C1. 2007.

  6. Arjunan KP, Friedman G, Fridman A, Clyne AM. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species. J Royal Soc Interface. 2012;9(66):147-57.

  7. Volkov AG, Hairston JS, Patel D, Gott RP, Xu KG. Cold plasma poration and corrugation of pumpkin seed coats. Bioelectrochem. 2019;128:175-85.

  8. Volkov AG, Xu KG, Kolobov VI. Plasma generated reactive oxygen and nitrogen species can lead to closure, locking and constriction of the Dionaea muscipula Ellis trap. J Royal Soc Interface. 2019;16(150):20180713.

  9. Volkov AG, Xu KG, Kolobov VI. Cold plasma interactions with plants: Morphing and movements of Venus flytrap and Mimosa pudica induced by argon plasma jet. Bioelectrochem. 2017;118:100-5.

  10. Bormashenko E, Grynyov R, Bormashenko Y, Dvori E. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep. 2012;2:741.

  11. Bormashenko E, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J Exp Bot. 2015;66(13):4013-21.

  12. Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K. Reactive species in non-equilibrium atmospheric pressure plasmas: Generation, transport, and biological effects. Physics Rep. 2016;630:1-84.

  13. Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W. Reactive oxygen species in plants: Their generation, signal transduction, and scavenging mechanisms. Austral J Crop Sci. 2011;5(6):709-25.

  14. Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death. Plant Physiol. 2006;141(2):384-90.

  15. Kyzek S, Holubova L, Medvecka V, Tomekova J, Galova E, Zahoranova A. Cold atmospheric pressure plasma can induce adaptive response in pea seeds. Plasma Chem Plasma Process. 2018;39:475-86.

  16. Svubova R, Kyzek S, Medvecka V, Slovakova L, Galova E, Zahoranova A. Novel insight at into the effect of cold atmospheric pressure plasma on the activity of enzymes essential for the germination of pea (Pisum sativum L. cv. Prophet) seeds. Plasma Chem Plasma Process. 2020;40:1221-40.

  17. Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H. Seeds: Physiology of development, germination and dormancy. 3rd ed. New York: Springer; 2013.

  18. Choundhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90(5):856-67.

  19. Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM. Free oxygen radicals regulate plasma membrane Ca2+ and K+ permeable channels in plant root cells. J Cell Sci. 2003;116(Pt 1):81-8.

  20. Mittler R. ROS are good. Trends Plant Sci. 2017;22(1):11-9.

  21. Filatova I, Lyushkevich V, Goncharik S, Zhukovsky A, Krupenko N, Kalatskaja J. The effect of low-pressure plasma treatment of seeds on the plant resistance to pathogens and crop yields. J Phys D Appl Phys. 2020;53(24):244001.

  22. Lackmann JW, Schneider S, Edengeiser E, Jarzina F, Brinckmann S, Steinborn E, Havenith M, Benedikt J, Bandow JE. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J Royal Soc Interface. 2013;10(89):20130591.

  23. Volkov AG, Nyasani EK, Tuckett C, Greeman EA, Markin VS. Electrophysiology of pumpkin seeds: Memristors in vivo. Plant Signal Behav. 2016;11(4):e115600.

  24. Babaeva NY, Kushner MJ. Intracellular electric fields produced by dielectric barrier discharge treatment of skin. J Phys D Appl Phys. 2010;43(18):185206.

  25. Kalghatgi S, Tsai C, Gray R, Pappas D. Transdermal drug delivery using cold plasmas. 22nd International Symposium on Plasma Chemistry; July 5-10 2015; Antwerp, Belgium.

  26. Reuter S, Tresp H, Wende K, Hammer MU, Winter J, Masur K, Schmidt-Bleker A, Weltmann KD. From RONS to ROS: Tailoring plasma jet treatment of skin cells. IEEE Trans Plasma Sci. 2012;40(11):2986-93.

  27. Lemstrom K. Electricity in agriculture and horticulture. London: Electrician Publications; 1904.

  28. Bose JC. Transmission of stimuli in plants. Nature. 1925;115:457.

  29. Haire T, Patel D, Patel K, Jariwala J, Laite J, Lazar S, Palmer A. Regulation of Arabidopsis thaliana physiological responses through exogenous electrical field exposures with common lab equipment. J Plant Growth Regul. 2017;37:278-85.

  30. Ksenzhek OS, Volkov AG. Plant energetics. San Diego: Academic Press; 1998.

  31. Solly E. On the influence of electricity on vegetation. J Hort Sci. 1846;1:81-109.

  32. Volkov AG. Plant electrophysiology. Signaling and responses. Berlin: Springer; 2012.

  33. Volkov AG. Plant electrophysiology: Methods and cell electrophysiology. Berlin: Springer; 2012.

  34. Bertholon M. De l'electricite des vegetaux: Ouvrage dans lequel on traite de l'electricite de l'atmosphere sur les plantes, de ses effets sur leconomie des vegetaux, de leurs vertus medico. Paris: P.F. Didotjeune; 1783.

  35. van Gessel AFH, Carbone EAD, Bruggeman PJ, van der Mullen JJAM. Laser scattering on an atmospheric pressure plasma jet: Disentangling Rayleigh, Raman and Thomson scattering. Plasma Sources Sci Technol. 2012;21(1):015003.

  36. Xu KG, Doyle SJ. Measurement of atmospheric pressure microplasma jet with Langmuir probes. J Vac Sci Technol A. 2016;34(5):051301.

  37. Volkov AG, Deamer DW, Tanelian DL, Markin VS. Liquid interfaces in chemistry and biology. New York: Wiley; 1998.

  38. Volkov AG, Murphy VA, Markin VS. Mechanism of passive permeation of ions and molecules through plant membranes. In: Volkov AG, editor. Plant electrophysiology-methods and cell electrophysiology. New York: Springer; 2012. p. 323-56.

  39. Benech-Arnold RL, Sanchez RA, editors. Handbook of seed physiology: Applications to agriculture. New York: Food Products Press and the Haworth Reference Press; 2004.

  40. Gouveia C, Freitas G, Brito J, Slaski J, Carvalho M. Nutritional and mineral variability in 52 accessions of common bean varieties (Phaseolus vulgaris L.) from Madeira Island. Agric Sci. 2014;5(4):317-29.

  41. Tiwari BK, Singh N. Pulse chemistry and technology. Cambridge: Royal Society of Chemistry; 2012.

  42. Volkov AG, Paula S, Deamer DW. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem Bioenerg. 1997;42(2):153-60.

  43. Volkov AG. Signaling in electrical networks of the Venus flytrap (Dionaea muscipula Ellis). Bioelectrochem. 2019;125:25-32.

ЦИТИРОВАНО В
  1. Volkov Alexander G., Cold atmospheric pressure He-plasma jet and plasma ball interactions with the Venus flytrap: Electrophysiology and side effects, Bioelectrochemistry, 140, 2021. Crossref

  2. Volkov Alexander G., Bookal Asya, Hairston Jewel S., Roberts Jade, Taengwa Gamaliel, Patel Darayas, Mechanisms of multielectron reactions at the plasma/water interface: Interfacial catalysis, RONS, nitrogen fixation, and plasma activated water, Electrochimica Acta, 385, 2021. Crossref

  3. Recek Nina, Holc Matej, Vesel Alenka, Zaplotnik Rok, Gselman Peter, Mozetič Miran, Primc Gregor, Germination of Phaseolus vulgaris L. Seeds after a Short Treatment with a Powerful RF Plasma, International Journal of Molecular Sciences, 22, 13, 2021. Crossref

  4. Mildaziene Vida, Ivankov Anatolii, Sera Bozena, Baniulis Danas, Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma, Plants, 11, 7, 2022. Crossref

  5. Volkov Alexander G., Hairston Jewel S., Taengwa Gamaliel, Roberts Jade, Liburd Lincoln, Patel Darayas, Redox Reactions of Biologically Active Molecules upon Cold Atmospheric Pressure Plasma Treatment of Aqueous Solutions, Molecules, 27, 20, 2022. Crossref

1423 Просмотры статей 2732 Загрузка статей Метрики
1423 ПРОСМОТРЫ 2732 ЗАГРУЗКИ 5 Crossref ЦИТАТЫ Google
Scholar
ЦИТАТЫ

Статьи с похожим содержанием:

Role of Direct Plasma Irradiation, Plasma-Activated Liquid, and Plasma-Treated Soil in Plasma Agriculture Plasma Medicine, Vol.13, 2023, issue 3
Masaharu Shiratani, Takamasa Okumura, Pankaj Attri, Kunihiro Kamataki, Kazunori Koga, Jamoliddin Razzokov, Quanzhi Zhang, Nozomi Takeuchi
Germination of Wheat Seeds Exposed to Cold Atmospheric Plasma in Dry and Wet Plasma-Activated Water and Mist Plasma Medicine, Vol.10, 2020, issue 1
H. Arafa, A. Zaki, Mohamed El Shaer, H. El Welily, A. ElSebaei, Mona Mobasher, M. ElDaly
Enhancing Shelf Life of Bananas by Using Atmospheric Pressure Pulsed Cold Plasma Treatment of the Storage Atmosphere Plasma Medicine, Vol.9, 2019, issue 1
Gregory Fridman, Jasreen K. Sekhon, Hanako Itokazu, Mykola Kovalenko, Jacob Lahne, Gary Nirenberg, Alexander A. Fridman, Kanishka Patel, Ngoc Anh Huynh, Vandana Miller, Maharshi H. Trivedi
Plasma Coagulation Controller: A Low- Power Atmospheric Plasma Source for Accelerated Blood Coagulation Plasma Medicine, Vol.8, 2018, issue 3
L. Cordaro, S. De Rosa, Paola Brun, B. Zaniol, C. lndolfi, G. Marinaro, Gianluca De Masi, Roberto Cavazzana, C. Gareri, Matteo Zuin, A. Fassina, Emilio Martines
Use of Green Fluorescent Protein for Rapid Assessment of the Bactericidal Activity under Cold Plasma Irradiation Plasma Medicine, Vol.6, 2016, issue 2
Jingwen Yan, Qing Huang, Zhigang Ke, Lamei Li, Alexander A. Fridman, Shaopeng Chen, Vandana Miller
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain