Доступ предоставлен для: Guest
Plasma Medicine

Выходит 4 номеров в год

ISSN Печать: 1947-5764

ISSN Онлайн: 1947-5772

SJR: 0.216 SNIP: 0.263 CiteScore™:: 1.4 H-Index: 24

Indexed in

Elimination Effect of Airborne Fungi Using Dielectric Barrier Discharges Driven by a Pulsed Power Generator

Том 10, Выпуск 3, 2020, pp. 169-180
DOI: 10.1615/PlasmaMed.2020036473
Get accessDownload

Краткое описание

Fungal spores causes various problems, from human to plants diseases. Because they are suspended in air, these fungi are difficult to control. Penicillium italicum is such an airborne fungus, mainly spreading itself through spores, and is responsible for the most problematic postharvest diseases affecting oranges and other fruits. Their elimination when passing through the discharge section of the dielectric barrier discharge was evaluated. Nonthermal equilibrium plasma was generated by applying the pulsed voltage generated with the magnetic pulse compression circuit to the reactor. The elimination and sterilization effects were evaluated via hemocytometer and colony counting method. When discharge was generated, the numbers of spores in the impinger decreased up to 2.5 Log10, but the numbers attached to the reactor increased by electrostatic precipitation. The spores that adhered to the reactors were not inactivated. These results indicate that most of the spores passing through the discharge space were collected in the reactor, and those were not sterilized by the discharge. However, they were not blown by the air flow with and without discharge either. Our results give evidence that an ethylene decomposition system using DBD should prevent postharvest disease caused by airborne fungi by the electric filter and eliminate them from the transportation container.

ЛИТЕРАТУРА
  1. Lluis P, Smilanick JL, Crisosto CH, Monir M. Effect of gaseous ozone exposure on the development of green and blue molds on cold stored citrus fruit. Plant Dis. 2001;85(6):632-8.

  2. Takaki K, Nishimura J, Koide S, Takahashi K, Uchino T. Decomposition of ethylene using dual-polarity pulsed dielectric barrier discharge. IEEE Trans Plasma Sci. 2015;43(10):3476-82.

  3. Sharma RR, Singh D, Singh R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Bio Control. 2009;50(3):205-21.

  4. Ghaouth AE, Wilson C, Wisniewski M. Biologically-based alternatives to synthetic fungicides for the control of postharvest diseases of fruit and vegetables. Dis Fruits Vegetables. 2004;2:511-35.

  5. Abass AB, Ndunguru G, Mamiro P, Alenkhe B, Mlingi N, Bekunda M. Post-harvest food losses in a maize-based farming system of semi-arid savannah area ofTanzania. J Stored Prod Res. 2014;5749-57.

  6. Mainelis G, Adhikari A, Willeke K, Lee SA, Reponen T, Grinshpun SA. Collection of airborne microorganisms by a new electrostatic precipitator. J Aerosol Sci. 2002;33(10):1417-32.

  7. Masotti F, Cattaneo S, Stuknyte M, Noni ID. Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air. Trends Food Sci Technol. 2019;90:147-56.

  8. Mari M, Guizzardi M. The postharvest phase: emerging technologies for the control of fungal diseases. Phytoparasitica. 1998;26(1):59-66.

  9. Van Durme J, Dewulf J, Leys C, Van Langenhove H. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Appl Catal B Environ. 2008;78(3-4):324-33.

  10. Petitpas G, Rollier JD, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L. A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrogen Energy. 2007;32(14):2848-67.

  11. Takahashi K, Mori H, Takaki K. Influence of pulse width on radical production in ns-pulsed discharge reactor. IEEE J Trans Fundam Mater. 2018;138(3):84-90.

  12. Nishimura J, Takahashi K, Takaki K, Koide S, Suga M, Orikasa T, Teramoto Y, Uchino T. Removal of ethlene and by-product using dielectric barrier discharge with Ag nanoparticle-loaded zeolite for keeping freshness of fruits and vegetables. Trans Mater Res Soc Jpn. 2016;41(1):41-5.

  13. Oka A, Takahashi K, Takaki K, Ishida S, Terazawa T. Influence of gas humidity and gas flow rate on ozone production and ethylene decomposition using dielectric barrier discharge. Int J Plasma Environ Sci Technol. 2019;12(2):103-8.

  14. Takahashi K, Motodate T, Takaki K, Koide S. Influence of oxygen concentration on ethylene removal using dielectric barrier discharge. Jpn J Appl Phys. 2018;57(15):1-6.

  15. Vaze ND, Gallagher MJ, Park S, Fridman G, Vasilets VN, Gutsol AF, Anandan S, Friedman G, Fridman AA. Inactivation of bacteria in flight by direct exposure to nonthermal plasma. IEEE Trans Plasma Sci. 2010;38(11 Pt 2):3234-40.

  16. Choi JH, Han I, Baik HK, Lee MH, Han D-W, Park J-C, Lee I-S, Song KM, Lim YS. Analysis of sterilization effect by pulsed dielectric barrier discharge. J Electrostat. 2006;64(1):17-22.

  17. Zhou P, Yang Y, Lai ACK, Huang G. Inactivation of airborne bacteria by cold plasma in air duct flow. Build Environ. 2016;106:120-30.

  18. Fernandez A, Thompson A. The inactivation of Salmonella by cold atmospheric plasma treatment. Food Res Int. 2012;45(2):678-84.

  19. Vaze ND, Park S, Brooks AD, Fridman A, Joshi SG. Involvement of multiple stressors induced by non-thermal plasma-charged aerosols during inactivation of airborne bacteria. PLoS One. 2017;12(2):1-19.

  20. Lu H, Patil S, Keener KM, Cullen PJ, Bourke P. Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA. J Appl Microbiol. 2014;116(4):784-94.

  21. Gallagher MJ, Vaze N, Gangoli S, Vasilets VN, Gutsol AF, Milonova TN, Anandan S, Murasko DM, Fridman AA. Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge. IEEE Trans Plasma Sci. 2007;35(5 II):1501-10.

  22. Koide S, Nakagawa A, Omoe K, Takaki K, Uchino T. Physical and microbial collection efficiencies of an electrostatic precipitator for abating airborne particulates in postharvest agricultural processing. J Electrostat. 2013;71(4):734-8.

  23. Sale AJH, Hamilton WA. Effects of high electric fields on microorganisms. I. Killing of bacteria and yeasts. BBA Gen Subj. 1967;148(3):781-8.

  24. Palou L. Penicillium digitatum, Penicillium italicum (green mold, blue mold). In: Bautista-Banos S, editor. Postharvest decay: Control strategies. Cambridge, MA: Academic Press; 2014. p. 45-102.

  25. Adamiak K. Numerical models in simulating wire-plate electrostatic precipitators: A review. J Electrostat. 2013;71(4):673-80.

  26. Dramane B, Zouzou N, Moreau E, Touchard G. Electrostatic precipitation in wire-to-cylinder configuration: Effect of the high-voltage power supply waveform. J Electrostat. 2009;67(2-3):117-22.

  27. Lee C, Subhadra B, Choi HG, Suh HW, Uhm HS, Kim HJ. Inactivation of mycobacteria by radicals from non-thermal plasma jet. J Microbiol Biotechnol. 2019;29(9):1401-11.

  28. Alonso C, Raynor PC, Davies PR, Morrison RB, Torremorell M. Evaluation of an electrostatic particle ionization technology for decreasing airborne pathogens in pigs. Aerobiologia. 2016;32(3):405-19.

  29. Hirst AM, Simms MS, Mann VM, Maitland NJ, O'connell D, Frame FM. Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells. Br J Cancer. 2015;112(9):1536-45.

  30. Wang C, He X. Effect of atmospheric pressure dielectric barrier discharge air plasma on electrode surface. Appl Surf Sci. 2006;253(2):926-9.

ЦИТИРОВАНО В
  1. Takahashi Katsuyuki, Keeping Freshness of Agricultural Products, in Agritech: Innovative Agriculture Using Microwaves and Plasmas, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain