Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Multiphase Science and Technology
SJR: 0.124 SNIP: 0.222 CiteScore™: 0.26

ISSN Печать: 0276-1459
ISSN Онлайн: 1943-6181

Выпуски:
Том 31, 2019 Том 30, 2018 Том 29, 2017 Том 28, 2016 Том 27, 2015 Том 26, 2014 Том 25, 2013 Том 24, 2012 Том 23, 2011 Том 22, 2010 Том 21, 2009 Том 20, 2008 Том 19, 2007 Том 18, 2006 Том 17, 2005 Том 16, 2004 Том 15, 2003 Том 14, 2002 Том 13, 2001 Том 12, 2000 Том 11, 1999 Том 10, 1998 Том 9, 1997 Том 8, 1994 Том 7, 1993 Том 6, 1992 Том 5, 1990 Том 4, 1989 Том 3, 1987 Том 2, 1986 Том 1, 1982

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.v22.i2.40
pages 157-175

SHAPE OSCILLATIONS OF A BOILING BUBBLE

Cees W. M. van der Geld
Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Краткое описание

The shape of a free bubble or of a boiling bubble at an artificial cavity or needle may exhibit strong, axisymmetric shape oscillations. The Euler-Lagrangian approach facilitates computation of such oscillations. A derivation of the generalized forces needed in such an approach is presented. This derivation eliminates ambiguity in the description of the driving forces involved. Both increasing amplitude of oscillation and decreasing distance to the wall lower the radian frequency of oscillation of a free bubble. These two effects are quantified. A two-equation model to predict growth and detachment of a bubble with the shape of a truncated sphere on a plane wall is derived with the Euler-Lagrange approach. The period of oscillation of a fundamental mode of a free bubble, Tosc, is known to be proportional to the initial radius, R, cubed. That of a boiling bubble attached to a cavity has a similar dependency but with a difference in the proportionality constant of nearly a factor 2. This factor can be explained with the aid of a stability analysis of the two-equation model for a truncated sphere. The high factor results from the combination of two added mass force contributions: one related to isotropic deformation (expansion and contraction), the other related to motion of the center of mass above the plane wall. The amplitude of the oscillatory motion of a boiling bubble at a wall can be large during a long time of observation, e.g., a quarter of a second. Some dedicated experiments reveal the source of kinetic energy of this motion.

ЛИТЕРАТУРА

  1. Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena.

  2. Duhar, G., Riboux, G., and Colin, C., Vapour bubble growth and detachment at the wall of shear flow. DOI: 10.1007/s00231-007-0287-y

  3. Johnson, Jr., R. E., Conflicts between Gibbsian thermodynamics and recent treatments of interfacial energies in solid-liquid-vapor systems.

  4. Mann, M., Stephan, K., and Stephan, P., Influence of heat conduction in the wall on nucleate boiling heat transfer. DOI: 10.1016/S0017-9310(99)00292-6

  5. Matijevic, E., Surface and Colloid Science.

  6. Tsamopoulos, J. A. and Brown, R. A., Nonlinear oscillations of inviscid drops and bubbles. DOI: 10.1017/S0022112083002864

  7. van der Geld, C. W. M., On the motion of a spherical bubble deforming near a plane wall. DOI: 10.1023/A:1015249029267

  8. van der Geld, C. W. M. and Kuerten, J. G. M., Axisymmetric dynamics of a bubble near a plane wall. DOI: 10.1017/S0022112009991340

  9. van der Geld, C. W. M., The dynamics of a boiling bubble before and after detachment. DOI: 10.1007/s00231-007-0254-7

  10. van der Geld, C. W. M., van de Berg, R., and Peukert, P., Large amplitude oscillation of a boiling bubble growing at a wall in stagnation flow.

  11. van Stralen S. and Cole, R., Boiling Phenomena.


Articles with similar content:

Simulation of Void Fraction Profile Evolution in Subcooled Nucleate Boiling in a Vertical Annulus with a Bubble-Tracking Model
ICHMT DIGITAL LIBRARY ONLINE, Vol.2, 2004, issue
Ivo Kljenak, Borut Mavko
INFLUENCE OF SURFACE PROPERTIES ON AXISYMMETRICAL OSCILLATIONS OF A CYLINDRICAL BUBBLE
Interfacial Phenomena and Heat Transfer, Vol.7, 2019, issue 3
Alexey A. Alabuzhev
CRITICAL ROLES PLAYED BY AN OSCILLATING BUBBLE IN BUBBLE-SURFACE PHENOMENA
Multiphase Science and Technology, Vol.16, 2004, issue 4
Hirofumi Fukuta, Katsumi Tsuchiya
PARTICLE DISPERSION IN FLOWS OVER ROUGH SURFACES
TSFP DIGITAL LIBRARY ONLINE, Vol.8, 2013, issue
Paolo Orlandi, David Sassun, Matteo Bernardini, Sergio Pirozzoli
Study of the Combined Effects of Liquid Properties and Surface Micro-Patterning on Pool Boiling Heat Transfer
International Heat Transfer Conference 15, Vol.38, 2014, issue
Emanuele Teodori, Antonio L. N. Moreira, Ana S. Moita