Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Multiphase Science and Technology
SJR: 0.183 SNIP: 0.483 CiteScore™: 0.5

ISSN Печать: 0276-1459
ISSN Онлайн: 1943-6181

Том 32, 2020 Том 31, 2019 Том 30, 2018 Том 29, 2017 Том 28, 2016 Том 27, 2015 Том 26, 2014 Том 25, 2013 Том 24, 2012 Том 23, 2011 Том 22, 2010 Том 21, 2009 Том 20, 2008 Том 19, 2007 Том 18, 2006 Том 17, 2005 Том 16, 2004 Том 15, 2003 Том 14, 2002 Том 13, 2001 Том 12, 2000 Том 11, 1999 Том 10, 1998 Том 9, 1997 Том 8, 1994 Том 7, 1993 Том 6, 1992 Том 5, 1990 Том 4, 1989 Том 3, 1987 Том 2, 1986 Том 1, 1982

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.2020031539
pages 137-154


Jakob Roar Bentzon
Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
Attila Vural
Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
Karen L. Feilberg
The Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, Kgs. Lyngby, Denmark
Jens H. Walther
Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark; Computational Science and Engineering Laboratory, ETH, Zürich, CH-8092, Switzerland

Краткое описание

The present study examines the quantity of surface wetting in a two-phase oil and water pipe flow. The study is performed by employing an Eulerian-Eulerian computational fluid dynamics model using the S-gamma droplet size distribution model within STAR-CCM+. In the North Sea, production of oil and gas, water-phase surface processes such as scale and corrosion account for 40-50% of operating expenses. The objective of the study is to investigate best practices for the prediction of phase distribution aimed at evaluating the degree of the wall in contact with the water phase (water-wetting). The model is validated by performing detailed numerical simulations corresponding to the experimental studies by Kumara, Halvorsen, and Melaaen (Meas. Sci. Technol., vol. 20, p. 114004, 2009). The comparison yields good agreement with the observed measurements with slight deviations in the predicted dispersion rate but accurate prediction of the liquid holdup. Comparison of droplet sizes to those observed in experiments by Elseth (PhD, Telemark University College, 2001) indicates that tuning of the S-gamma model is necessary to provide accurate droplet size predictions. The surface wetting is then evaluated with its interdependence with liquid holdup and dispersion rate. Increase in the dispersion with a decrease in the Richardson number is observed in agreement with stability analysis of the Kelvin-Helmholtz instability.


  1. Angeli, P. and Hewitt, G.F., Drop Size Distributions in Horizontal Oil-Water Dispersed Flows, Chem. Eng. Sci, vol. 55, no. 16, pp. 3133-3143, 2000.

  2. Auton, T.R., Hunt, J.C.R., and Prud'Homme, M., The Force Exerted on a Body in Inviscid Unsteady Non-Uniform Rotational Flow, J. Fluid Mech., vol. 197, pp. 241-256,1988.

  3. Brackbill, J.U., Kothe, D.B., and Zemach, C., A Continuum Method for Modeling Surface Tension, J. Comput. Phys, vol. 100, no. 2, pp. 335-354, 1992.

  4. Brauner, N., The Prediction of Dispersed Flows Boundaries in Liquid-Liquid and Gas-Liquid Systems, Int. J. Multiphase Flow, vol. 27, no. 5, pp. 885-910, 2001.

  5. Cerne, G., Petelin, S., and Tiselj, I., Coupling of the Interface Tracking and the Two-Fluid Models for the Simulation of Incompressible Two-Phase Flow, J. Comput. Phys, vol. 171, pp. 776-804, 2001?.

  6. Coste, P., A Large Interface Model for Two-Phase CFD, Nucl. Eng. Des, vol. 255, pp. 38-50, 2013.

  7. dos Santos, R.G., Mohamed, R.S., Bannwart, A.C., and Loh, W., Contact Angle Measurements and Wetting behavior of Inner Surfaces of Pipelines Exposed to Heavy Crude Oil and Water, J. Pet. Sci. Eng., vol. 51, pp. 9-16, 2006.

  8. Drazin, P.G. and Reid, W.H., Hydrodynamic Stability, 2nd Ed., Cambridge, UK: Cambridge University Press, 2004.

  9. Elseth, G., An Experimental Study of Oil/Water Flow in Horizontal Pipes, PhD, Telemark University College, 2001.

  10. Glimm, J., Grove, J.W., Li, X.L., Oh, W., and Sharp, D.H., A Critical Analysis of Rayleigh-Taylor Growth Rates, J. Comput. Phys., vol. 169, no. 2, pp. 652-677, 2001.

  11. Goldstein, S., On the Stability of Superposed Streams of Fluids of Different Densities, Proc. R. Soc. A, vol. 132, no. 820, pp. 524-548, 1931.

  12. Hazel, P., Numerical Studies of the Stability of Inviscid Stratified Shear Flows, J. Fluid Mech., vol. 51, no. 1,pp. 39-61, 1972.

  13. Hill, D.P., An Experimental Study of Oil/Water Flow in Horizontal Pipes, PhD, University of London, 1998.

  14. Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys, vol. 39, no. 1, pp. 201-225,1981.

  15. Ishii, M. and Hibiki, T., Thermo-Fluid Dynamics of Two-Phase Flow, 2nd Ed., New York: Springer, 2006.

  16. Kumara, W.A.S., Elseth, G., Halvorsen, B.M., and Melaaen, M.C., Computational Study of Stratified Two Phase Oil/Water Flow in Horizontal Pipes, HEFAT2008, Citeseer, 2008.

  17. Kumara, W.A.S., Halvorsen, B.M., and Melaaen, M.C., Pressure Drop, Flow Pattern and Local Water Volume Fraction Measurements of Oil-Water Flow in Pipes, Meas. Sci. Technol., vol. 20, p. 114004, 2009.

  18. Lamb, S.H., Hydrodynamics, 6th Ed., New York: Dover Publications, 1932.

  19. Lance, M. and Bataille, J., Turbulence in the Liquid-Phase of a Uniform Bubbly Air Water-Flow, J. Fluid Mech., vol. 222, pp. 95-118,1991.

  20. Lo, S. and Zhang, D., Modelling of Break-Up and Coalescence in Bubbly Two-Phase Flows, Int. Comm. Heat Mass Transfer, vol. 1, no. 1, pp. 23-38,2009.

  21. Muzaferija, S. and Peric, M., Computation of Free Surface Flows Using Interface-Tracking and Interface-Capturing Methods, Numer. Heat Transfer, Part B, vol. 32, no. 4, pp. 369-384, 1997.

  22. Pouraria, H., Seo, J.K., and Paik, J.K., A Numerical Study on Water Wetting Associated with the Internal Corrosion of Oil Pipelines, Ocean Eng., vol. 122, pp. 105-117, 2016.

  23. Prosperetti, A. and Tryggvason, G., Computational Methods for Multiphase Flow, Cambridge, UK: Cambridge University Press, 2007.

  24. Schiller, L. and Naumann, A., Uber Die Grundlegende Berechnungen Bei Der Schwerkraftaufbreitung, Z. Ver. Deutsch. Ing, vol. 77, no. 12, pp. 318-320,1933.

  25. Schumann, H., Khatibi, M., Tutkun, M., Pettersen, B.H., Yang, Z., and Nydal, I.J., Droplet Size Measurements in Oil-Water Dispersions: A Comparison Study Using FBRM and PVM, J. Disp. Sci. Tech., vol. 36, no. 10, pp. 1432-1443,2015.

  26. Shih, T., Liou, W.W., Shabbir, A., Yang, Z., and Zhu, J., A New k-e Eddy Viscosity Model for High Reynolds Number Turbulent Flows, Comput. Fluids, vol. 24, no. 3, pp. 227-238, 1995.

  27. Strubelj, L., Tiselj, I., and Mavko, B., Simulations of Free Surface Flows with Implementation of Surface Tension and Interface Sharpening in the Two-Fluid Model, Int. J. Heat Fluid Flow, vol. 30, no. 4, pp. 741-750,2009.

  28. Taylor, G.I., Effect of Variation in Density on the Stability of Superposed Streams of Fluid, Proc. R. Soc. A, vol. 132, no. 820, pp. 499-523,1931.

  29. Taylor, G.T., The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicuar to Their Planes, Proc. R. Soc. Lond., vol. 201, pp. 192-196, 1950.

  30. Turner, J.S., Buoyancy Effects in Fluids, Cambridge, UK: Cambridge University Press, 1973.

Articles with similar content:

Multiphase Science and Technology, Vol.25, 2013, issue 1
Abdelsalam Al-Sarkhi, C. Sarica
Atomization and Sprays, Vol.30, 2020, issue 4
Aqeel Ahmed, Salvador Navarro-Martinez, K. Vogiatzaki, Francois-Xavier Demoulin, B. Duret, G. Tretola, Julien Reveillon
Atomization and Sprays, Vol.26, 2016, issue 3
Johannes Janicka, Amsini Sadiki, Benjamin Sauer
Numerical simulation of oil return in compressor gas-liquid separator
Second Thermal and Fluids Engineering Conference, Vol.24, 2017, issue
Xia Chen, Yuting Wu, Rui Ma, De-lou Zhang, Chong Fang Ma, Chun-Xu Du
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.6, 2018, issue
Oscar M. Hernandez Rodriguez, Gustavo Bochio