Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Multiphase Science and Technology
SJR: 0.124 SNIP: 0.222 CiteScore™: 0.26

ISSN Печать: 0276-1459
ISSN Онлайн: 1943-6181

Выпуски:
Том 31, 2019 Том 30, 2018 Том 29, 2017 Том 28, 2016 Том 27, 2015 Том 26, 2014 Том 25, 2013 Том 24, 2012 Том 23, 2011 Том 22, 2010 Том 21, 2009 Том 20, 2008 Том 19, 2007 Том 18, 2006 Том 17, 2005 Том 16, 2004 Том 15, 2003 Том 14, 2002 Том 13, 2001 Том 12, 2000 Том 11, 1999 Том 10, 1998 Том 9, 1997 Том 8, 1994 Том 7, 1993 Том 6, 1992 Том 5, 1990 Том 4, 1989 Том 3, 1987 Том 2, 1986 Том 1, 1982

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.2019031051
pages 235-254

FRICTIONAL PRESSURE DROP IN A FLOTATION COLUMN: AN EXPERIMENTAL INVESTIGATION IN CONTINUOUS MODE AND ITS PREDICTION BY A GENERAL MODEL

Musliyar Kurungattil Fahad
Department of Chemical Engineering, Indian Institute of Technology Guwahati-781039, India
Ritesh Prakash
Department of Chemical Engineering, Indian Institute of Technology Guwahati-781039, India
Subrata Kumar Majumder
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, PIN-781039, Assam, India
Pallab Ghosh
Department of Chemical Engineering, Indian Institute of Technology Guwahati-781039, India

Краткое описание

The present work investigates the frictional pressure drop characteristics of a three-phase system in a countercurrent flotation column. The effects of particle size, slurry concentration, superficial gas velocity, superficial slurry velocity, and surfactant type (i.e., cationic, anionic, and non-ionic) on frictional pressure are investigated. The frictional pressure drop decreases with increasing superficial gas velocity. However, it increases with increasing slurry concentration and superficial slurry velocity. The increase in particle size leads to an increase in the frictional pressure drop. It is deduced that larger bubbles are responsible for higher circulation velocity, which in turn increases slurry momentum. The addition of surfactant to the three-phase system creates smaller bubbles, which do not cause much circulation of slurry and tend to reduce the frictional pressure drop. Correlations are developed considering the operating, dynamic, and geometric variables for estimating the frictional pressure drop in two- and three-phase systems. The developed correlations have less than ± 20% error. The present analysis will be useful for process intensification of flotation in the industries.

ЛИТЕРАТУРА

  1. Besagni, G. and Inzoli, F., The Effect of Liquid Phase Properties on Bubble Column Fluid Dynamics: Gas Holdup, Flow Regime Transition, Bubble Size Distributions and Shapes, Interfacial Areas and Foaming Phenomena, Chem. Eng. Sci, vol. 170, pp. 270-296, 2017.

  2. Besarati, S.M., Myers, P.D., Covey, D.C., and Jamali, A., Modeling Friction Factor in Pipeline Flow Using a GMDH-Type Neural Network, Cogent Eng., vol. 2, p. 1056929, 2015.

  3. Bhole, M.R. and Joshi, J.B., Modeling Gas Holdup in Flotation Column Froths, Can. J. Chem. Eng., vol. 85, pp. 369-373, 2007.

  4. Bhunia, K., Kundu, G., and Mukherjee, D., Pressure Characteristics in a Flotation Column, Int. J. Chem. Tech. Res., vol. 6, pp. 276-285, 2014.

  5. Desouky, S.E.M. and E1-Emam, N.A., Program Designs for Pseudoplastic Fluids, Oil Gas J, vol. 87, pp. 48-51, 1989.

  6. Duangprasert, T., Sirivat, A., Siemanond, K., and Wilkes, J.O., Vertical Two-Phase Flow Regimes and Pressure Gradients under the Influence of SDS Surfactant, Exp. Therm Fluid Sci., vol. 32, pp. 808-817, 2008.

  7. Fahad, M.K., Prakash, R., Majumder, S.K., and Ghosh, P., Gas Holdup in the Gas-Liquid-Coal Slurry Flow in a Flotation Column in Presence of Surface Active Agent, Multiphase Sci. Technol., vol. 31, no. 3, pp. 199-214, 2019.

  8. Friedel, L., Pressure-Drop during Gas-Vapor-Liquid Flow in Pipes, Chem. Ing. Tech, vol. 50, pp. 167-180, 1978.

  9. Ganat, T. and Hrairi, M., Gas-Liquid Two-Phase Upward Flow through a Vertical Pipe: Influence of Pressure Drop on the Measurement of Fluid Flow Rate, Energies, vol. 11, p. 2937,2018.

  10. Ghajar, A.J. and Bhagwat, S.M., Effect of Void Fraction and Two-Phase Dynamic Viscosity Models on Prediction of Hydrostatic and Frictional Pressure Drop in Vertical Upward Gas-Liquid Two-Phase Flow, Heat Transf. Eng., vol. 34, pp. 1044-1059, 2013.

  11. Gharai, M. and Venugopal, R., Modeling of Flotation Process-An Overview of Different Approaches, Miner. Process. Extr. Metall. Rev, vol. 37, pp. 120-133, 2016.

  12. Gotz, M., Lefebvre, J., Mors, F., Reimert, R., Graf, F., and Kolb, T., Hydrodynamics of Organic and Ionic Liquids in a Slurry Bubble Column Reactor Operated at Elevated Temperatures, Chem. Eng. J., vol. 286, pp. 348-360,2016.

  13. Honaker, R. and Mohanty, M., Enhanced Column Flotation Performance for Fine Coal Cleaning, Miner. Eng., vol. 9, pp. 931-945,1996.

  14. Hughmark, G.A. and Pressburg, B.S., Holdup and Pressure Drop with Gas-Liquid Flow in a Vertical Pipe, AIChEJ., vol. 7, pp. 677-682, 1961.

  15. Joshi, J., A Circulation Cell Model for Bubble Columns, Trans. Inst. Chem. Eng., vol. 57, pp. 244-251, 1979.

  16. Kawatra, S.K. and Eisele, T.C., Rheological Effects in Grinding Circuits, Int. J. Miner. Process., vol. 22, pp. 251-259,1988.

  17. Khuntia, S., Majumder, S.K., and Ghosh, P., Microbubble-Aided Water and Wastewater Purification: A Review, Rev. Chem. Eng., vol. 28, pp. 4-6,2012.

  18. Labidi, J., Pelach, M., Turon, X., and Mutje, P., Predicting Flotation Efficiency Using Neural Networks, Chem. Eng. Process, vol. 46, pp. 314-322, 2007.

  19. Lee, J.-E. and Lee, J.-K., Effect of Microbubbles and Particle Size on the Particle Collection in the Column Flotation, Korean J. Chem. Eng., vol. 19, pp. 703-710, 2002.

  20. Li, X., Xu, H., Liu, J., Zhang, J., Li, J., and Gui, Z., Cyclonic State Micro-Bubble Flotation Column in Oil-in-Water Emulsion Separation, Sep. Purif. Technol., vol. 165, pp. 101-106, 2016.

  21. Liu, J.-T., Zhang, M., Li, Y.-F., and Yang, L., Research on Pressure Drop Performance of the Packing-Flotation Column, J. China Univ. Min. Technol., vol. 16, pp. 389-392, 2006.

  22. Lu, C., Kong, R., Qiao, S., Larimer, J., Kim, S., Bajorek, S., and Hoxie, C., Frictional Pressure Drop Analysis for Horizontal and Vertical Air-Water Two-Phase Flows in Different Pipe Sizes, Nucl. Eng. Des., vol. 332, pp. 147-161, 2018.

  23. Majumder, S.K., Ghosh, S., Kundu, G., and Mitra, A.K., Frictional Pressure Drop of Gas-Newtonian and Gas-Non Newtonian Slug Flow in Vertical Pipe, Int. J. Chem. Reactor Eng., vol. 9, no. 1, 2011.

  24. Majumder, S.K., Hydrodynamics and Mass Transfer in Down Flow Slurry Bubble Columns, Oakville, Canada: Apple Academic Press, 2019.

  25. Majumder, S.K., Hydrodynamics and Transport Processes of Inverse Bubbly Flow, Amsterdam, the Nether-lands: Elsevier, 2016.

  26. Nouri, N., Motlagh, S.Y., Navidbakhsh, M., Dalilhaghi, M., and Moltani, A., Bubble Effect on Pressure Drop Reduction in Upward Pipe Flow, Exp. Therm Fluid Sci., vol. 44, pp. 592-598, 2012.

  27. Ojima, S., Sasaki, S., Hayashi, K., and Tomiyama, A., Effects of Particle Diameter on Bubble Coalescence in a Slurry Bubble Column, J. Chem. Eng. Jpn, vol. 48, pp. 181-189,2015.

  28. Pal, S.S., Mitra, A.K., and Roy, N.N., Pressure Drop and Holdup in Vertical Two-Phase Co-Current Flow with Improved Gas-Liquid Mixing, Ind. Eng. Chem. Process Des. Dev., vol. 19, no. 1, pp. 67-75, 1980.

  29. Pouplin, A., Masbernat, O., Decarre, S., and Line, A., Wall Friction and Effective Viscosity of a Homogeneous Dispersed Liquid-Liquid Flow in a Horizontal Pipe, AIChEJ, vol. 57, pp. 1119-1131, 2011.

  30. Prakash, R., Majumder, S.K., and Singh, A., Flotation Technique: Its Mechanisms and Design Parameters, Chem. Eng. Process, vol. 127, pp. 249-270,2018a.

  31. Prakash, R., Majumder, S.K., and Singh, A., Gas Holdup and Frictional Pressure Drop Contributions in Micro Structured Two- and Three-Phase Bubbling Bed with Newtonian and Non-Newtonian Liquids:Effect of Coarse and Fine Particles with Surface Active Agent, Chem. Eng. Process., vol. 133, pp. 40- 57,2018b.

  32. Prakash, R., Majumder, S.K., and Singh, A., Particle-Laden Bubble Size and Its Distribution in Microstructured Bubbling Bed in Presence and Absence of a Surface Active Agent, Ind. Eng. Chem. Res., vol. 58, pp. 3499-3522,2019.

  33. Rabha, S., Schubert, M., and Hampel, U., Intrinsic Flow Behavior in a Slurry Bubble Column: A Study on the Effect of Particle Size, Chem. Eng. Sci, vol. 93, pp. 401-411, 2013a.

  34. Rabha, S., Schubert, M., Wagner, M., Lucas, D., and Hampel, U., Bubble Size and Radial Gas Holdup Distributions in a Slurry Bubble Column Using Ultrafast Electron Beam X-Ray Tomography, AIChE J, vol. 59, pp. 1709-1722, 2013b.

  35. Sarhan, A.R., Naser, J., and Brooks, G., CFD Simulation on Influence of Suspended Solid Particles on Bubbles' Coalescence Rate in Flotation Cell, Int. J. Miner. Process, vol. 146, pp. 54-64, 2016.

  36. Senapati, P.K., Panda, D., and Parida, A., Predicting Viscosity of Limestone-Water Slurry, Int. J. Miner. Mater. Charact. Eng., vol. 8, pp. 203-221, 2009.

  37. Shukla, S.C., Kukade, S., Mandal, S.K., and Kundu, G., Coal-Oil-Water Multiphase Fuel: Rheological Behavior and Prediction of Optimum Particle Size, Fuel., vol. 87, pp. 3428-3432, 2008.

  38. Shukla, S.C., Kundu, G., and Mukherjee, D., Study of Gas Holdup and Pressure Characteristics in a Column Flotation Cell Using Coal, Miner. Eng., vol. 23, pp. 636-642, 2010.

  39. Tao, D., Role of Bubble Size in Flotation of Coarse and Fine Particles-A Review, Sep. Sci. Technol, vol. 39, pp. 741-760,2005.

  40. Vadlakonda, B. and Mangadoddy, N., Hydrodynamic Study of Three-Phase Flow in Column Flotation Using Electrical Resistance Tomography Coupled with Pressure Transducers, Sep. Purif. Technol., vol. 203, pp. 274-288,2018.

  41. Wang, L., Peng, Y., Runge, K., and Bradshaw, D., A Review of Entrainment: Mechanisms, Contributing Factors and Modelling in Flotation, Miner. Eng., vol. 70, pp. 77-91, 2015.

  42. Wilkinson, P.M., Haringa, H., Stokman, F.P.A., and Van Dierendonck, L.L., Liquid Mixing in a Bubble Column under Pressure, Chem. Eng. Sci., vol. 48, pp. 1785-1791, 1993.

  43. Xing, Y., Gui, X., Cao, Y., Wang, Y., Xu, M., Wang, D., and Li, C., Effect of Compound Collector and Blending Frother on Froth Stability and Flotation Performance of Oxidized Coal, Powder Technol., vol. 305, pp. 166-173,2017.

  44. Xing, Y., Xu, M., Gui, X., Cao, Y., Babel, B., Rudolph, M., Weber, S., Kappl, M., and Butt, H.-J., The Application of Atomic Force Microscopy in Mineral Flotation, Adv. Colloid Interf. Sci., vol. 256, pp. 373-392, 2018.

  45. Xu, Y., Fang, X., Su, X., Zhou, Z., and Chen, W., Evaluation of Frictional Pressure Drop Correlations for Two-Phase Flow in Pipes, Nucl. Eng. Des., vol. 253, pp. 86-97,2012.

  46. Yoshida, Y., Katsumoto, T., Taniguchi, S., Shimosaka, A., Shirakawa, Y., and Hidaka, J., Prediction of Viscosity of Slurry Suspended Fine Particles Using Coupled DEM-DNS Simulation, Chem. Eng. Trans., vol. 32, pp. 2089-2094, 2013.

  47. Zhou, Z.A., Plitt, L.R., and Egiebor, N.O., The Effects of Solids and Reagents on the Characteristics of Coal Flotation in Columns, Miner. Eng., vol. 6, pp. 291-306,1993.