Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Multiphase Science and Technology
SJR: 0.124 SNIP: 0.222 CiteScore™: 0.26

ISSN Печать: 0276-1459
ISSN Онлайн: 1943-6181

Выпуски:
Том 31, 2019 Том 30, 2018 Том 29, 2017 Том 28, 2016 Том 27, 2015 Том 26, 2014 Том 25, 2013 Том 24, 2012 Том 23, 2011 Том 22, 2010 Том 21, 2009 Том 20, 2008 Том 19, 2007 Том 18, 2006 Том 17, 2005 Том 16, 2004 Том 15, 2003 Том 14, 2002 Том 13, 2001 Том 12, 2000 Том 11, 1999 Том 10, 1998 Том 9, 1997 Том 8, 1994 Том 7, 1993 Том 6, 1992 Том 5, 1990 Том 4, 1989 Том 3, 1987 Том 2, 1986 Том 1, 1982

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.2018021352
pages 207-219

THERMAL CHARACTERIZATION USING FOURIER AND NON-FOURIER CONDUCTION DURING RADIOFREQUENCY ABLATION OF BREAST TUMOR

Sundeep Singh
Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
Ramjee Repaka
Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India

Краткое описание

Most of the numerical studies on radiofrequency ablation (RFA) utilize the Pennes bioheat equation to predict the temperature distribution and ablation volume post-treatment. The Pennes bioheat equation is based on the classical Fourier's law of heat conduction which assumes infinite speed of heat propagation. However, in reality the propagation of thermal disturbance occurs usually at a finite speed with a delay ranging from 10 to 20 s in biological tissues. The present study investigates the differences between the Fourier and non-Fourier bioheat transfer models during RFA of breast tumor. A heterogeneous three-dimensional model of breast has been constructed based on the anatomical details available in the literature. The thermo-electric analysis has been performed using a finite element method (FEM)- based software by incorporating the coupled electric field distribution, the bioheat transfer equation, and the Arrhenius rate equation. The effect of temperature-dependent changes in electrical and thermal conductivities has been incorporated along with a non-linear model of blood perfusion. The numerical simulation results revealed that the Fourier model slightly overestimates the size of ablation volume produced during constant-voltage RFA of breast tumor as compared to non-Fourier conduction model. The effects of thermal relaxation time on the temperature distribution, input voltage requirement, and ablation volume have been studied for both the constant-voltage and temperature-controlled RFA. It has been found that the variation between temperature distributions and ablation volume obtained from the two approaches is more pronounced initially, and later decays with increase in treatment time.