Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Multiphase Science and Technology
SJR: 0.124 SNIP: 0.222 CiteScore™: 0.26

ISSN Печать: 0276-1459
ISSN Онлайн: 1943-6181

Выпуски:
Том 31, 2019 Том 30, 2018 Том 29, 2017 Том 28, 2016 Том 27, 2015 Том 26, 2014 Том 25, 2013 Том 24, 2012 Том 23, 2011 Том 22, 2010 Том 21, 2009 Том 20, 2008 Том 19, 2007 Том 18, 2006 Том 17, 2005 Том 16, 2004 Том 15, 2003 Том 14, 2002 Том 13, 2001 Том 12, 2000 Том 11, 1999 Том 10, 1998 Том 9, 1997 Том 8, 1994 Том 7, 1993 Том 6, 1992 Том 5, 1990 Том 4, 1989 Том 3, 1987 Том 2, 1986 Том 1, 1982

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.2019029476
pages 61-71

HYDRODYNAMIC SOUND GENERATED BY COLLAPSE OF VAPOR BUBBLES IN SUBCOOLED LIQUID FLOW

Kosuke Hayashi
Graduate School of Engineering, Kobe University, 1-1, Rokkodai, Nada, Kobe 657-8501, Japan
Shigeo Hosokawa
Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
Akio Tomiyama
Graduate School of Engineering, Kobe University, 1-1, Rokkodai, Nada, Kobe 657-8501, Japan

Краткое описание

Sound generated by collapse of vapor bubbles injected into a subcooled water pipe flow was measured to investigate the effects of temperature gradient forming at the pipe wall on the sound level. The degree, ΔT, of subcooling was 20 K, the water velocity was 1.2 m/s, and the vapor was injected from a circular hole of 1 mm in diameter placed on the pipe wall. Water was heated just upstream of the test section to make ΔT non-uniform. The smaller ΔT due to heating made the noise level smaller. The noise level cannot be correlated in terms of the local ΔT at the bubble collapse event in spite of the rapid condensation, whereas the noise level with temperature gradient agrees with that of uniform ΔT by taking into account the temperature variation in the region from the vapor inlet to the position of collapse event.

Ключевые слова: noise, condensation, vapor bubble, microbubble

ЛИТЕРАТУРА

  1. Ando, J., Horiuchi, K., Saiki, T., Kaneko, T., and Ueno, I., Transition Process Leading to Microbubble Emission Boiling on Horizontal Circular Heated Surface in Subcooled Pool, Int. J. Heat Mass Trans., vol. 101, pp. 240–250, 2016.

  2. Board, S.J. and Kimpton, A.D., Spherical Vapour Bubble Collapse, Chem. Eng. Sci., vol. 29, pp. 363–371, 1974.

  3. Brennen, C., Cavitation Bubble Dynamics and Noise Production, 6th Int. Workshop on Multiphase Flow, Tokyo, Japan, pp. 1–28, 1993.

  4. Brennen, C.E., Fission of Collapsing Cavitation Bubbles, J. Fluid Mech., vol. 472, pp. 153–166, 2002.

  5. Hayashi, K., Tateyama, M., Ikeuchi, K., Hosokawa, S., Tomiyama, A., Hirotsu, M., and Takeda, N., Effects of Subcooling on Sound Generation by Vapor Bubbles in Water, Multiphase Sci. Technol., vol. 27, no. 1, pp. 67–75, 2015.

  6. Inada, S., Miyasaka, Y., Sakumoto, S., and Izumi, R., Study of Boiling Characteristic Curves in Subcooled Pool Boiling of Water: 2nd Report, Effect of Contamination of Surface on Boiling Heat Transfer and Collapse Vapor Slug, Trans. JSME, vol. 47, no. 422, pp. 2021–2029, 1981.

  7. Ponter, A. and Haigh, C., Sound Emission and Heat Transfer Pool Boiling in Low Pressure Pool Boiling, Int. J. Heat Mass Trans., vol. 12, pp. 413–428, 1969.

  8. Suzuki, K., Kokubu, T., Nakano, M., Kawamura, H., Ueno, I., Shida, H., and Ogawa, O., Enhancement of Heat Transfer in Subcooled Flow Boiling with Microbubble Emission, Exp. Thermal Fluid Sci., vol. 29, no. 7, pp. 827–832, 2005.

  9. Tange, M., Yuasa, M., Takagi, S., and Shoji, M., Microbubble Emission Boiling in a Microchannel and Minichannel, Thermal Sci. Eng., vol. 12, no. 6, pp. 23–29, 2004.

  10. Ueno, I., Ando, J., Koiwa, Y., Saiki, T., and Kaneko, T., Interfacial Instability of a Condensing Vapor Bubble in a Subcooled Liquid, Eur. Phys. J. Special Topics, vol. 224, no. 2, pp. 415–424, 2015.

  11. Ueno, I. and Arima, M., Behavior of Vapor Bubble in Subcooled Pool, Micrograv. Sci. Technol., vol. XIX, pp. 128–129, 2007.

  12. Ueno, I., Hattori, Y., and Hosoya, R., Condensation and Collapse of Vapor Bubbles Injected in Subcooled Pool, Micrograv. Sci. Technol., vol. 23, pp. 73–77, 2011.

  13. Ueno, I., Koiwa, Y., Okada, M., and Kaneko, T., Condensation of Vapor Injected to Subcooled Pool, 10th Int. Conf. on Boiling and Condensation Heat Transfer (ICBCHT2018), Nagasaki, Japan, 2018.

  14. Ueno, I., Saiki, T., Osawa, T., and Hong, C., Condensation and Collapse of Vapor Bubble Injected to Sub- Cooled Pool, ASME 2013 11th Int. Conf. on Nanochannels, Microchannels, and Minichannels, Sapporo, Japan, p. ICNMM2013–73190, 2013.

  15. Zhu, G., Sun, L., Tang, J., Mo, Z., and Liu, H., A Visualized Study of Micro-Bubble Emission Boiling, Int. Commun. Heat Mass Trans., vol. 59, pp. 148–157, 2014.


Articles with similar content:

EFFECTS OF SUBCOOLING ON SOUND GENERATION BY VAPOR BUBBLES IN WATER
Multiphase Science and Technology, Vol.27, 2015, issue 1
Akio Tomiyama, Nobuhiro Takeda, Shigeo Hosokawa, Kosuke Hayashi, Kazutaka Ikeuchi, Makoto Hirotsu, Masaya Tateyama
Research on Characteristics of Pressure Oscillation Amplitude due to Double- Hole Steam Jet Submerged in Subcooled Water
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.29, 2018, issue
Weixiong Chen, Yingchun Wang, Chenxi Huang, Daotong Chong, Lutao Wang, Junjie Yan
A MICRO FLOWMETER BASED ON THE MEASUREMENT OF A DIFFUSION TEMPERATURE RISE OF A LOCALLY HEATED THERMAL FLOW IN A HAGEN-POISEUILLE FLOW
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Taichi Kimura, Hiroyoshi Koizumi, Yoshihiro Kato
AN EXPERIMENTAL APPROACH TO VORTEX-FLAME INTERACTION IN KARMAN VORTEX STREETS BEHIND A ROD-ARRAY
TSFP DIGITAL LIBRARY ONLINE, Vol.4, 2005, issue
Yojiro Ishino, Norio Ohiwa
Effects of vortex-induced velocity on the wake of a synthetic jet issuing into a turbulent boundary layer
TSFP DIGITAL LIBRARY ONLINE, Vol.10, 2017, issue
Guillaume Gomit, Bharathram Ganapathisubramani, Tim Berk