Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Multiphase Science and Technology
SJR: 0.124 SNIP: 0.222 CiteScore™: 0.26

ISSN Печать: 0276-1459
ISSN Онлайн: 1943-6181

Выпуски:
Том 32, 2020 Том 31, 2019 Том 30, 2018 Том 29, 2017 Том 28, 2016 Том 27, 2015 Том 26, 2014 Том 25, 2013 Том 24, 2012 Том 23, 2011 Том 22, 2010 Том 21, 2009 Том 20, 2008 Том 19, 2007 Том 18, 2006 Том 17, 2005 Том 16, 2004 Том 15, 2003 Том 14, 2002 Том 13, 2001 Том 12, 2000 Том 11, 1999 Том 10, 1998 Том 9, 1997 Том 8, 1994 Том 7, 1993 Том 6, 1992 Том 5, 1990 Том 4, 1989 Том 3, 1987 Том 2, 1986 Том 1, 1982

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.2018025983
pages 31-76

COMPARISON OF MODELS FOR DRAG AND NON-DRAG FORCES FOR GAS-LIQUID TWO-PHASE BUBBLY FLOW

Dhiraj A. Lote
Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
V. Vinod
Indira Gandhi Center of Atomic Research, Kalpakkam, Tamil Nadu 603102, India
Ashwin W. Patwardhan
Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India

Краткое описание

In this study, we have compared the effect of various interfacial forces such as drag, lift, wall lubrication and turbulent dispersion force. We analyze the contribution of these forces on numerical predictions of radial gas void fraction distribution, interfacial area concentration, and gas and liquid velocity profile. A CFD model has been developed for the prediction of radial distribution of gas void fraction and interfacial area concentration in a vertical pipe. For the development of this CFD code, the experimental data were taken from the available literature. The experimental conditions are, pipe diameter of 48.3−51.2 mm, wide range of superficial liquid velocity 0.405−2.607 m/s, and gas superficial velocity 0.0111−1.275 m/s, and wide range of bubble diameters 2.5−9.3 mm. The void fractions vary from 1.89% to 25.7%. Based on the experimental data available in the literature, three cases of low bubble Reynolds number (Reb ≈ 29), medium (Reb ≈ 880), and high (Reb ≈ 15,132), at the inlet have been selected. Different interfacial force models differ in the prediction of radial distribution of gas void fraction and interfacial area concentration. Based on the results obtained for comparison of interfacial forces, the Grace drag model, Tomiyama lift and wall lubrication model, and Burns turbulent dispersion force model were found to provide the best agreement with the experimental data.