Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

MOLECULAR DYNAMICS/XFEM COUPLING BY A THREE-DIMENSIONAL EXTENDED BRIDGING DOMAIN WITH APPLICATIONS TO DYNAMIC BRITTLE FRACTURE

Том 11, Выпуск 6, 2013, pp. 527-541
DOI: 10.1615/IntJMultCompEng.2013005838
Get accessGet access

Краткое описание

We propose a method to couple a three-dimensional continuum domain to a molecular dynamics domain to simulate propagating cracks in dynamics. The continuum domain is treated by an extended finite element method to handle the discontinuities. The coupling is based on the bridging domain method, which blends the continuum and atomistic energies. The Lennard-Jones potential is used to model the interactions in the atomistic domain, and the Cauchy-Born rule is used to compute the material behavior in the continuum domain. To our knowledge, it is the first time that a three dimensional extended bridging domain method is reported. To show the suitability of the proposed method, a three-dimensional crack problem with an atomistic region around the crack front is solved. The results show that the method is capable of handling crack propagation and dislocation nucleation.

ЛИТЕРАТУРА
  1. ABAQUS 6.11, Standard User‘s Manual.

  2. Aghaei, A., Abdolhosseini Qomi, M., Kazemi, M., and Khoei, A., Stability and size-dependency of cauchy-born hypothesis in three-dimensional applications. DOI: 10.1016/j.ijsolstr.2009.01.013

  3. Anciaux, G., Ramisetti, S., and Molinari, J., A finite temperature bridging domain method for MD-FE coupling and application to a contact problem. DOI: 10.1016/j.cma.2011.01.012

  4. Babuška, I., Caloz, G., and Osborn, J., Special finite element methods for a class of second order elliptic problems with rough coefficients. DOI: 10.1137/0731051

  5. Babu&#353;ka, I. and Melenk, J. M., The partition of unity method. DOI: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N

  6. Barbieri, E., Petrinic, N., Meo, M., and Tagarielli, V. L., A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity. DOI: 10.1002/nme.3313

  7. Belytschko, T. and Black, T., Elastic crack growth in finite elements with minimal remeshing. DOI: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

  8. Belytschko, T. and Guidault, P. A., Bridging domain methods for coupled atomistic&mdash;continuum models with <i>L</i><sup>2</sup> or <i>H</i><sup>1</sup> couplings. DOI: 10.1002/nme.2461

  9. Belytschko, T. and Xiao, S. P., A bridging domain method for coupling continua with molecular dynamics. DOI: 10.1016/j.cma.2003.12.053

  10. Belytschko, T. and Xu, M., Conservation properties of the bridging domain method for coupled molecular/continuum dynamics. DOI: 10.1002/nme.2323

  11. Ben Dhia, H. R. G., The arlequin method as a flexible engineering design tool. DOI: 10.1002/nme.1229

  12. Borst, R. D., Aubertin, P., and R&#233;thor&#233;, J., A coupled molecular dynamics and extended finite element method for dynamic crack propagation. DOI: 10.1002/nme.2675

  13. Borst, R. D., Aubertin, P., and R&#233;thor&#233;, J., Energy conservation of atomistic/continuum coupling. DOI: 10.1002/nme.2542

  14. B&#252;hler, M., Atomistic Modeling of Materials Failure.

  15. Cavalcante Neto, J. B., Wawrzynek, P. A., Carvalho, M. T. M., Martha, L. F., and Ingraffea, A. R., An algorithm for threedimensional mesh generation for arbitrary regions with cracks. DOI: 10.1007/PL00007196

  16. Cleri, F., Wolf, D., Yip, S., and Phillpot, S. R., Atomistic simulation of dislocation nucleation and motion from a crack tip. DOI: 10.1016/S1359-6454(97)00214-0

  17. Duarte, C. and Oden, J., An HP adaptive method using clouds. DOI: 10.1016/S0045-7825(96)01085-7

  18. Duflot, M. and Nguyen-Dang, H., A meshless method with enriched weight functions for fatigue crack growth. DOI: 10.1002/nme.948

  19. Fries, T., A corrected xfem approximation without problems in blending elements. DOI: 10.1002/nme.2259

  20. Galland, F., Gravouil, A., Malvesin, E., and Rochette, M., A global model reduction approach for 3D fatigue crack growth with confined plasticity. DOI: 10.1016/j.cma.2010.08.018

  21. Gracie, R. and Belytschko, T., Concurrently coupled atomistic and XFEM models for dislocations and cracks. DOI: 10.1002/nme.2488

  22. Gracie, R. and Belytschko, T., An adaptive concurrent multiscale method for the dynamic simulation of dislocations. DOI: 10.1002/nme.3112

  23. Gracie, R., Oswald, J., and Belytschko, T., On a new extended finite element method for dislocations: Core enrichment and nonlinear formulation. DOI: 10.1016/j.jmps.2007.07.010

  24. Haile, J., Molecular Dynamics Simulation: Elementary Methods.

  25. Kelchner, C., Plimpton, S., and Hamilton, J., Dislocation nucleation and defect structure during surface indentation. DOI: 10.1103/PhysRevB.58.11085

  26. Kerfriden, P., Gosselet, P., Adhikari, S., Bordas, S., and Passieux, J., POD-based model order reduction for the simulation of strong nonlinear evolutions in structures: Application to damage propagation. DOI: 10.1088/1757-899X/10/1/012165

  27. Kerfriden, P., Gosselet, P., Adhikari, S., and Bordas, S. P. A., Bridging proper orthogonal decomposition methods and augmented Newton&#8211;Krylov algorithms: An adaptive model order reduction for highly nonlinear mechanical problems. DOI: 10.1016/j.cma.2010.10.009

  28. Kerfriden, P., Passieux, J., and Bordas, S., Local/global model order reduction strategy for the simulation of quasi-brittle fracture. DOI: 10.1002/nme.3234

  29. Lange, F., The interaction of a crack front with a second-phase dispersion. DOI: 10.1080/14786437008221068

  30. Menouillard, T., R&#233;thor&#233;, J., Combescure, A., and Bung, H., Efficient explicit time stepping for the extended finite element method (X-FEM). DOI: 10.1002/nme.1718

  31. Mi, C., Buttry, D., Sharma, P., and Kouris, D., Atomistic insights into dislocation-based mechanisms of void growth and coalescence. DOI: 10.1016/j.jmps.2011.05.008

  32. Miller, R. and Tadmor, E., The quasicontinuum method: Overview, applications and current directions. DOI: 10.1023/A:1026098010127

  33. Nguyen, V., Rabczuk, T., Bordas, S., and Duflot, M., Meshless methods: A review and computer implementation aspects. DOI: 10.1016/j.matcom.2008.01.003

  34. Nose, S., Constant-temperature molecular dynamics. DOI: 10.1088/0953-8984/2/S/013

  35. Oden, J. and Prudhomme, S., Estimation of modeling error in computational mechanics. DOI: 10.1006/jcph.2002.7183

  36. Oden, J. and Vemaganti, K., Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. Part I. Error estimates and adaptive algorithms. DOI: 10.1006/jcph.2000.6585

  37. Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. DOI: 10.1006/jcph.1995.1039

  38. Plimpton, S., Atomistic Stress Simulator (WARP).

  39. Pozrikidis, C., On the applicability of the Cauchy-Born rule. DOI: 10.1016/j.commatsci.2009.03.031

  40. Press, W., Numerical Recipes in FORTRAN: the art of scientific computing.

  41. Rapaport, D., The Art of Molecular Dynamics Simulation.

  42. Ravi-Chandar, K. and Knauss,W. G., An experimental investigation into dynamic fracture: II Microstructural aspects. DOI: 10.1007/BF01152313

  43. Robert, J., Comments on virial theorems for bounded systems. DOI: 10.1119/1.13390

  44. Shenoy, V., Miller, R., Tadmor, E., Rodney, D., Phillips, R., and Ortiz, M., An adaptive finite element approach to atomic-scale mechanics&#8211;the quasicontinuum method.

  45. Simpson, R. and Trevelyan, J., Evaluation of <i>J</i><sub>1</sub> and <i>J</i><sub>2</sub> integrals for curved cracks using an enriched boundary element method. DOI: 10.1016/j.engfracmech.2010.12.006

  46. Simpson, R. and Trevelyan, J., A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics. DOI: 10.1016/j.cma.2010.06.015

  47. Strouboulis, T., Babu&#353;ka, I., and Copps, K., The design and analysis of the generalized finite element method. DOI: 10.1016/S0045-7825(99)00072-9

  48. Subramaniyan, A. and Sun, C., Continuum interpretation of virial stress in molecular simulations. DOI: 10.1016/j.ijsolstr.2008.03.016

  49. Sun, Y., Izumi, S., Hara, S., and Sakai, S., Anisotropy behavior of dislocation nucleation from a sharp corner in copper. DOI: 10.1299/jcst.5.54

  50. Tadmor, E., Ortiz, M., and Phillips, R., Quasicontinuum analysis of defects in solids. DOI: 10.1080/01418619608243000

  51. Talebi, H., Samaniego, C., Samaniego, E., and Rabczuk, T., On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods. DOI: 10.1002/nme.3275

  52. Talebi, H., Zi, G., Silani, M., Samaniego, E., and Rabczuk, T., A simple circular cell method for multilevel finite element analysis. DOI: 10.1155/2012/526846

  53. Ventura, G., Xu, J., and Belytschko, T., A vector level set method and new discontinuity approximations for crack growth by EFG. DOI: 10.1002/nme.471

  54. Xiao, S. P. and Belytschko, T., Coupling methods for continuum model with molecular model.

  55. Xiong, L., Deng, Q., Tucker, G., McDowell, D., and Chen, Y., A concurrent scheme for passing dislocations from atomistic to continuum domains. DOI: 10.1016/j.actamat.2011.11.002

  56. Zhang, Y., Hughes, T., and Bajaj, C., An automatic 3D mesh generation method for domains with multiple materials. DOI: 10.1016/j.cma.2009.06.007

ЦИТИРОВАНО В
  1. Zhuang Xiaoying, Wang Qing, Zhu Hehua, A 3D computational homogenization model for porous material and parameters identification, Computational Materials Science, 96, 2015. Crossref

  2. Nguyen-Xuan H., Hoang T., Nguyen V.P., An isogeometric analysis for elliptic homogenization problems, Computers & Mathematics with Applications, 67, 9, 2014. Crossref

  3. Kumar Sachin, Singh I.V., Mishra B.K., A multigrid coupled (FE-EFG) approach to simulate fatigue crack growth in heterogeneous materials, Theoretical and Applied Fracture Mechanics, 72, 2014. Crossref

  4. Zhuang Xiaoying, Chun Junwei, Zhu Hehua, A comparative study on unfilled and filled crack propagation for rock-like brittle material, Theoretical and Applied Fracture Mechanics, 72, 2014. Crossref

  5. Silani Mohammad, Ziaei-Rad Saeed, Talebi Hossein, Rabczuk Timon, A semi-concurrent multiscale approach for modeling damage in nanocomposites, Theoretical and Applied Fracture Mechanics, 74, 2014. Crossref

  6. Budarapu Pattabhi R., Gracie Robert, Yang Shih-Wei, Zhuang Xiaoying, Rabczuk Timon, Efficient coarse graining in multiscale modeling of fracture, Theoretical and Applied Fracture Mechanics, 69, 2014. Crossref

  7. Silani Mohammad, Talebi Hossein, Ziaei-Rad Saeed, Hamouda Abdel Magid, Zi Goangseup, Rabczuk Timon, A three dimensional extended Arlequin method for dynamic fracture, Computational Materials Science, 96, 2015. Crossref

  8. Wudtke Idna, Talebi Hossein, Silani Mohammad, Werner Frank, A hierarchical multi-scale approach to mechanical characterization of heat affected zone in welded connections, Computational Materials Science, 96, 2015. Crossref

  9. Sudhir Sastry Y.B., Budarapu Pattabhi R., Krishna Y., Devaraj S., Studies on ballistic impact of the composite panels, Theoretical and Applied Fracture Mechanics, 72, 2014. Crossref

  10. Talebi Hossein, Silani Mohammad, Rabczuk Timon, Concurrent multiscale modeling of three dimensional crack and dislocation propagation, Advances in Engineering Software, 80, 2015. Crossref

  11. Budarapu Pattabhi R., Yb Sudhir Sastry, Javvaji Brahmanandam, Mahapatra D. Roy, Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium, Frontiers of Structural and Civil Engineering, 8, 2, 2014. Crossref

  12. Zhu Hehua, Chen Xingyu, Cai Yongchang, Chen Jianfeng, Wang Zhiliang, The Fracture Influence on the Energy Loss of Compressed Air Energy Storage in Hard Rock, Mathematical Problems in Engineering, 2015, 2015. Crossref

  13. Zhu Hehua, Wang Qing, Zhuang Xiaoying, A nonlinear semi-concurrent multiscale method for fractures, International Journal of Impact Engineering, 87, 2016. Crossref

  14. Asadpour A., Thermo-elastic extended meshfree method for fracture without crack tip enrichment, Frontiers of Structural and Civil Engineering, 9, 4, 2015. Crossref

  15. Kumar V., Ramamurthy K., Meshfree and finite element modelling of impact: A comparative study, International Journal of Impact Engineering, 90, 2016. Crossref

  16. Hoang K.C., Fu Y., Song J.H., An hp-proper orthogonal decomposition–moving least squares approach for molecular dynamics simulation, Computer Methods in Applied Mechanics and Engineering, 298, 2016. Crossref

  17. Hamdia Khader M., Lahmer Tom, Nguyen-Thoi Trung, Rabczuk Timon, Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS, Computational Materials Science, 102, 2015. Crossref

  18. Wang S., Meshfree modelling of brittle and ductile dynamic fracture, International Journal of Impact Engineering, 90, 2016. Crossref

  19. Alizadeh O., Tolooei Eshlaghi G., Mohammadi S., Nanoindentation simulation of coated aluminum thin film using quasicontinuum method, Computational Materials Science, 111, 2016. Crossref

  20. Silani Mohammad, Talebi Hossein, Hamouda Abdel Magid, Rabczuk Timon, Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach, Journal of Computational Science, 15, 2016. Crossref

  21. Bhardwaj G., Singh I.V., Mishra B.K., Fatigue crack growth in functionally graded material using homogenized XIGA, Composite Structures, 134, 2015. Crossref

  22. Amani J., Oterkus E., Areias P., Zi G., Nguyen-Thoi T., Rabczuk T., A non-ordinary state-based peridynamics formulation for thermoplastic fracture, International Journal of Impact Engineering, 87, 2016. Crossref

  23. Singh X., Singh M., WITHDRAWN: Multiscale modeling of fracture in rock, Engineering Geology, 2016. Crossref

  24. Goel Sunkulp, Kumar Nikhil, Fuloria Devasri, Jayaganthan R., Singh I. V., Srivastava D., Dey G. K., Saibaba N., Evaluating Fracture Toughness of Rolled Zircaloy-2 at Different Temperatures Using XFEM, Journal of Materials Engineering and Performance, 25, 9, 2016. Crossref

  25. Nguyen T., Quoc N., Nguyen V., WITHDRAWN: Meshfree approach for hydraulic fracture, Engineering Geology, 2016. Crossref

  26. Thai Tran Quoc, Rabczuk Timon, Bazilevs Yuri, Meschke Günther, A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, 304, 2016. Crossref

  27. Drathi R., Das A.J.M., Rangarajan A., Meshfree simulation of concrete structures and impact loading, International Journal of Impact Engineering, 91, 2016. Crossref

  28. Kumar Sachin, Singh I.V., Mishra B.K., Sharma Kamal, Khan I.A., A homogenized multigrid XFEM to predict the crack growth behavior of ductile material in the presence of microstructural defects, Engineering Fracture Mechanics, 205, 2019. Crossref

  29. Dean A., Sahraee S., Özenc K., Reinoso J., Rolfes R., Kaliske M., A thermodynamically consistent framework to couple damage and plasticity microplane-based formulations for fracture modeling: development and algorithmic treatment, International Journal of Fracture, 203, 1-2, 2017. Crossref

  30. He Bo, Mortazavi Bohayra, Zhuang Xiaoying, Rabczuk Timon, Modeling Kapitza resistance of two-phase composite material, Composite Structures, 152, 2016. Crossref

  31. Sadeghzadeh S., Benchmarking the penetration-resistance efficiency of multilayer graphene sheets due to spacing the graphene layers, Applied Physics A, 122, 7, 2016. Crossref

  32. Budarapu P. R., Y B Sudhir Sastry, Natarajan R., Design concepts of an aircraft wing: composite and morphing airfoil with auxetic structures, Frontiers of Structural and Civil Engineering, 10, 4, 2016. Crossref

  33. Ghorashi S.Sh., Lahmer T., Bagherzadeh A.S., Zi G., Rabczuk T., A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials, Engineering Geology, 225, 2017. Crossref

  34. Pattabhi R., Sastrya S., Rajagopal A., WITHDRAWN: Cracking particle methods simulation of dynamic fracture in laminated composites, International Journal of Impact Engineering, 2016. Crossref

  35. Liu S., WITHDRAWN: Computational modeling of fracture in rock using an improved cracking particles method, Engineering Geology, 2016. Crossref

  36. Nariman Nazim Abdul, Control efficiency optimization and Sobol’s sensitivity indices of MTMDs design parameters for buffeting and flutter vibrations in a cable stayed bridge, Frontiers of Structural and Civil Engineering, 11, 1, 2017. Crossref

  37. Nariman Nazim Abdul, Influence of fluid-structure interaction on vortex induced vibration and lock-in phenomena in long span bridges, Frontiers of Structural and Civil Engineering, 10, 4, 2016. Crossref

  38. Shirazi A. H. N., Mohebbi Farzad, Azadi Kakavand M. R., He B., Rabczuk T., Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation, Journal of Nanomaterials, 2016, 2016. Crossref

  39. Javvaji B., Budarapu P.R., Sutrakar V.K., Mahapatra D. Roy, Paggi M., Zi G., Rabczuk T., Mechanical properties of Graphene: Molecular dynamics simulations correlated to continuum based scaling laws, Computational Materials Science, 125, 2016. Crossref

  40. Bhardwaj G., Singh S.K., Singh I.V., Mishra B.K., Rabczuk Timon, Fatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGA, Theoretical and Applied Fracture Mechanics, 85, 2016. Crossref

  41. Zhao Jinhai, Tang Hesheng, Xue Songtao, A new fracture criterion for peridynamic and dual-horizon peridynamics, Frontiers of Structural and Civil Engineering, 12, 4, 2018. Crossref

  42. Nariman Nazim Abdul, A novel structural modification to eliminate the early coupling between bending and torsional mode shapes in a cable stayed bridge, Frontiers of Structural and Civil Engineering, 11, 2, 2017. Crossref

  43. Zhuang Xiaoying, Wang Qing, Zhu Hehua, Effective Properties of Composites with Periodic Random Packing of Ellipsoids, Materials, 10, 2, 2017. Crossref

  44. Shen Yang, He Pengfei, Zhuang Xiaoying, Fracture model for the prediction of the electrical percolation threshold in CNTs/Polymer composites, Frontiers of Structural and Civil Engineering, 12, 1, 2018. Crossref

  45. Shin Hyunseong, Cho Maenghyo, Multiscale model to predict fatigue crack propagation behavior of thermoset polymeric nanocomposites, Composites Part A: Applied Science and Manufacturing, 99, 2017. Crossref

  46. Abdollahzadeh Gholamreza, Faghihmaleki Hadi, Proposal of a probabilistic assessment of structural collapse concomitantly subject to earthquake and gas explosion, Frontiers of Structural and Civil Engineering, 12, 3, 2018. Crossref

  47. Balakrishnan Vasanth, Roshan P., Goel Sunkulp, Jayaganthan R., Singh I. V., Experimental and XFEM Simulation of Tensile and Fracture Behavior of Al 6061 Alloy Processed by Severe Plastic Deformation, Metallography, Microstructure, and Analysis, 6, 1, 2017. Crossref

  48. Budarapu P. R., Rabczuk T., Multiscale Methods for Fracture: A Review $$^\bigstar $$ ★, Journal of the Indian Institute of Science, 97, 3, 2017. Crossref

  49. Zhao Jinhai, Tang Hesheng, Xue Songtao, Peridynamics versus XFEM: a comparative study for quasi-static crack problems, Frontiers of Structural and Civil Engineering, 12, 4, 2018. Crossref

  50. Sutula Danas, Kerfriden Pierre, van Dam Tonie, Bordas Stéphane P.A., Minimum energy multiple crack propagation. Part I: Theory and state of the art review, Engineering Fracture Mechanics, 191, 2018. Crossref

  51. Izadifar Mohammadreza, Abadi Rouzbeh, Jam Amir Namazian, Rabczuk Timon, Investigation into the effect of doping of boron and nitrogen atoms in the mechanical properties of single-layer polycrystalline graphene, Computational Materials Science, 138, 2017. Crossref

  52. Shafiei A., Dynamic crack propagation in plates weakened by inclined cracks: an investigation based on peridynamics, Frontiers of Structural and Civil Engineering, 12, 4, 2018. Crossref

  53. Nariman Nazim Abdul, Hussain Raja Rizwan, Msekh Mohammed A, Karampour Peyman, Prediction meta-models for the responses of a circular tunnel during earthquakes, Underground Space, 4, 1, 2019. Crossref

  54. Nariman Nazim Abdul, Thermal fluid-structure interaction and coupled thermal-stress analysis in a cable stayed bridge exposed to fire, Frontiers of Structural and Civil Engineering, 12, 4, 2018. Crossref

  55. Shirazi Ali Hossein Nezhad, Molecular dynamics investigation of mechanical properties of single-layer phagraphene, Frontiers of Structural and Civil Engineering, 13, 2, 2019. Crossref

  56. Nariman Nazim Abdul, Lahmer Tom, Karampour Peyman, Uncertainty quantification of stability and damage detection parameters of coupled hydrodynamic-ground motion in concrete gravity dams, Frontiers of Structural and Civil Engineering, 13, 2, 2019. Crossref

  57. He Pengfei, Shen Yang, Gu Yun, Shen Pangyong, 3D fracture modelling and limit state analysis of prestressed composite concrete pipes, Frontiers of Structural and Civil Engineering, 13, 1, 2019. Crossref

  58. Vu-Bac Nam, Rabczuk Timon, Zhuang Xiaoying, Continuum/Finite Element Modeling of Carbon Nanotube–Reinforced Polymers, in Carbon Nanotube-Reinforced Polymers, 2018. Crossref

  59. Silani Mohammad, Rabczuk Timon, Zhuang Xiaoying, Computational Multiscale Modeling of Carbon Nanotube–Reinforced Polymers, in Carbon Nanotube-Reinforced Polymers, 2018. Crossref

  60. Budarapu P.R., Javvaji B., Reinoso J., Paggi M., Rabczuk T., A three dimensional adaptive multiscale method for crack growth in Silicon, Theoretical and Applied Fracture Mechanics, 96, 2018. Crossref

  61. Jenabidehkordi Ali, Computational methods for fracture in rock: a review and recent advances, Frontiers of Structural and Civil Engineering, 13, 2, 2019. Crossref

  62. Nariman Nazim Abdul, Hussain Raja Rizwan, Mohammad Ilham Ibrahim, Karampour Peyman, Global sensitivity analysis of certain and uncertain factors for a circular tunnel under seismic action, Frontiers of Structural and Civil Engineering, 13, 6, 2019. Crossref

  63. Rabczuk Timon, Song Jeong-Hoon, Zhuang Xiaoying, Anitescu Cosmin, Multiscale methods for fracture, in Extended Finite Element and Meshfree Methods, 2020. Crossref

  64. Mandal Tushar Kanti, Nguyen Vinh Phu, Wu Jian-Ying, Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture, Engineering Fracture Mechanics, 217, 2019. Crossref

  65. Ai Dihao, Zhao Yuechao, Wang Qifei, Li Chengwu, Crack propagation and dynamic properties of coal under SHPB impact loading: Experimental investigation and numerical simulation, Theoretical and Applied Fracture Mechanics, 105, 2020. Crossref

  66. Hewitt Sam, Margetts Lee, Shterenlikht Anton, Revell Alistair, A massively parallel multiscale CAFE framework for the modelling of fracture in heterogeneous materials under dynamic loading, Advances in Engineering Software, 139, 2020. Crossref

  67. Budarapu Pattabhi Ramaiah, Zhuang Xiaoying, Rabczuk Timon, Bordas Stephane P.A., Multiscale modeling of material failure: Theory and computational methods, in Advances in Crystals and Elastic Metamaterials, Part 2, 52, 2019. Crossref

  68. Wu Jian-Ying, Nguyen Vinh Phu, Nguyen Chi Thanh, Sutula Danas, Sinaie Sina, Bordas Stéphane P.A., , 53, 2020. Crossref

  69. Gupta Tejendra Kumar, Budarapu Pattabhi Ramaiah, Chappidi Sivakumar Reddy, Y.B. Sudhir Sastry, Paggi Marco, Bordas Stephane P., Advances in Carbon Based Nanomaterials for Bio-Medical Applications, Current Medicinal Chemistry, 26, 38, 2019. Crossref

  70. He Bang, Schuler Louis, Newell Pania, A numerical-homogenization based phase-field fracture modeling of linear elastic heterogeneous porous media, Computational Materials Science, 176, 2020. Crossref

  71. Xiao Shaoping, Deierling Phillip, Attarian Siamak, El Tuhami Ahmed, Machine learning in multiscale modeling of spatially tailored materials with microstructure uncertainties, Computers & Structures, 249, 2021. Crossref

  72. Zhao Jinhai, Tan Li, Dou Xiaojing, Crack propagation with different radius local random damage based on peridynamic theory, Frontiers of Structural and Civil Engineering, 15, 5, 2021. Crossref

  73. Budarapu P.R., Reinoso J., Paggi M., Concurrently coupled solid shell-based adaptive multiscale method for fracture, Computer Methods in Applied Mechanics and Engineering, 319, 2017. Crossref

  74. Hamdia Khader M., Zhuang Xiaoying, He Pengfei, Rabczuk Timon, Fracture toughness of polymeric particle nanocomposites: Evaluation of models performance using Bayesian method, Composites Science and Technology, 126, 2016. Crossref

  75. Rokoš O., Peerlings R.H.J., Zeman J., eXtended variational quasicontinuum methodology for lattice networks with damage and crack propagation, Computer Methods in Applied Mechanics and Engineering, 320, 2017. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain