Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Extended Multiscale Finite Element Method for Mechanical Analysis of Periodic Lattice Truss Materials

Том 8, Выпуск 6, 2010, pp. 597-613
DOI: 10.1615/IntJMultCompEng.v8.i6.40
Get accessGet access

Краткое описание

An extended multiscale finite element method (EMsFEM) is developed to study the equivalent mechanical properties of periodic lattice truss materials. The underlying idea is to construct the numerical multiscale base functions to reflect the heterogeneity of the unit cell of periodic truss materials. To consider the coupled effect among different directions in the multidimensional problems, the coupled additional terms of base functions for the interpolation of the vector fields are introduced. Numerical results show that the base functions constructed by linear boundary conditions will induce nonequilibrium of the boundary nodal forces and thus lead to a strong scale effect of the unit cell in the multiscale computation. Thus, more reasonable oscillatory boundary conditions are introduced by using the oversampling technique in the construction of the multiscale base functions of the unit cell. A special algorithm is introduced to improve the properties of the equivalent stiffness matrix of the unit cell to make the numerical results more accurate. The advantage of the developed method is that the downscaling computation could be realized easily and the stress and strain in the unit cell can be obtained simultaneously in the multiscale computation. Therefore, the developed method has great potential for strength analysis of heterogeneous materials.

ЛИТЕРАТУРА
  1. Aarnes, J. E., On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. DOI: 10.1137/030600655

  2. Aarnes, J. E., Krogstad, S., and Lie, K. A., A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids. DOI: 10.1137/050634566

  3. Benssousan, A., Lions, J. L., and Papanicoulau, G., Asymptotic analysis for periodic structures.

  4. Brittain, S. T., Sugimura, Y., Schueller, O. J. A., Evans, A. G., and Whitesides, G. M., Fabrication and mechanical performance of a mesoscale space-filling truss system. DOI: 10.1109/84.911099

  5. Chen, Z. and Hou, T. Y., A mixed multiscale finite element method for elliptic problems with oscillating coefficients. DOI: 10.1090/S0025-5718-02-01441-2

  6. Chu, J., Efendiev, Y., Ginting, V., and Hou, T. Y., Flow based oversampling technique for multiscale finite element methods. DOI: 10.1016/j.advwatres.2007.11.005

  7. Deshpande, V. S., Fleck, N. A., and Ashby, M. F., Effective properties of the octet-truss lattice material. DOI: 10.1016/S0022-5096(01)00010-2

  8. Dostert, P., Efendiev, Y., and Hou, T. Y., Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification. DOI: 10.1016/j.cma.2008.02.030

  9. Efendiev, Y., Ginting, V., Hou, T. Y., and Ewing, R., Accurate multiscale finite element methods for two-phase flow simulations. DOI: 10.1016/j.jcp.2006.05.015

  10. Efendiev, Y. and Hou, T. Y., Multiscale finite element methods for porous media flows and their applications. DOI: 10.1016/j.apnum.2006.07.009

  11. Evans, A. G., Hutchinson, J. W., Ashby, M. F., and Wadley, H. N. G., The topological design of multifunctional cellular metals. DOI: 10.1016/S0079-6425(00)00016-5

  12. Fish, J., Shek, K., Pundheeradi, M., and Shephard, M. S., Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. DOI: 10.1016/S0045-7825(97)00030-3

  13. Hassani, B. and Hinton, E., A review of homogenization and topology optimization, I. Homogenization theory for media with periodic structure. DOI: 10.1016/S0045-7949(98)00131-X

  14. Hazanov, S. and Huet, C., Order relationships for boundary conditions effect in heterogeneous bodies smaller than representative volume. DOI: 10.1016/0022-5096(94)90022-1

  15. He, X. and Ren, L., Finite volume multiscale finite element method for solving the groundwater flow problems in heterogeneous porous media. DOI: 10.1029/2004WR003934

  16. Hou, A. and Gramoll, K., Compressive strength of composite lattice structures. DOI: 10.1177/073168449801700505

  17. Hou, T. Y. and Wu, X. H., A multiscale finite element method for elliptic problems in composite materials and porous media. DOI: 10.1006/jcph.1997.5682

  18. Hou, T. Y., Wu, X. H., and Cai, Z. Q., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. DOI: 10.1090/S0025-5718-99-01077-7

  19. Hou, T. Y., Multiscale modelling and computation of fluid flow. DOI: 10.1002/fld.866

  20. Huet, C., Application of variational concepts to size effects in elastic heterogeneous bodies. DOI: 10.1016/0022-5096(90)90041-2

  21. Huybrechts, S. M., Meink, T. E., Wegener, P. M., and Ganley, J. M., Manufacturing theory for advanced grid stiffened structures. DOI: 10.1016/S1359-835X(01)00113-0

  22. Jenny, P., Lee, S. H., and Tchelepi, H. A., Multi-scale finite volume method for elliptic problems in subsurface flow simulation. DOI: 10.1016/S0021-9991(03)00075-5

  23. Kanit, T., Forest, S., Galliet, I., Mounoury, V., and Jeulin, D., Determination of the size of the representative volume element for random composites: Statistical and numerical approach. DOI: 10.1016/S0020-7683(03)00143-4

  24. Kouznetsova, V., Computational Homogenization for the Multi-Scale Analysis of Multi-Phase Materials.

  25. Noor, A. K., Continuum modeling for repetitive lattice structures. DOI: 10.1115/1.3151907

  26. Ostoja-Starzewski, M., Random field models of heterogeneous materials. DOI: 10.1016/S0020-7683(97)00144-3

  27. Pecullan, S., Gibiansky, L. V., and Torquato, S., Scale effects on the elastic behavior of periodic and hierarchical twodimensional composites. DOI: 10.1016/S0022-5096(98)00111-2

  28. Terada, K., Hori, M., Kyoya, T., and Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approach. DOI: 10.1016/S0020-7683(98)00341-2

  29. Wadley, H. N. G., Multifunctional periodic cellular metals. DOI: 10.1098/rsta.2005.1697

  30. Yan, J., Cheng, G. D., Liu, S. T., and Liu, L., Comparison of prediction on effective elastic property and shape optimization of truss material with periodic microstructure. DOI: 10.1016/j.ijmecsci.2005.11.003

  31. Ye, H. F., Wang, J. B., and Zhang, H.W., Numerical algorithms for prediction of mechanical properties of single-walled carbon nanotubes based on molecular mechanics model. DOI: 10.1016/j.commatsci.2008.07.023

  32. Yu, Q. and Fish, J., Multiscale asymptotic homogenization for multiphysics problem with multiple spatial and temporal scales: A coupled thermo-viscoelastic example problem. DOI: 10.1016/S0020-7683(02)00255-X

  33. Zhang, H. W., Fu, Z. D., and Wu, J. K., Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media. DOI: 10.1016/j.advwatres.2008.11.002

ЦИТИРОВАНО В
  1. Casadei F., Rimoli J.J., Ruzzene M., A geometric multiscale finite element method for the dynamic analysis of heterogeneous solids, Computer Methods in Applied Mechanics and Engineering, 263, 2013. Crossref

  2. Beex L.A.A., Kerfriden P., Rabczuk T., Bordas S.P.A., Quasicontinuum-based multiscale approaches for plate-like beam lattices experiencing in-plane and out-of-plane deformation, Computer Methods in Applied Mechanics and Engineering, 279, 2014. Crossref

  3. Yan Jun, Hu Wen-Bo, Wang Zhen-Hua, Duan Zun-Yi, Size effect of lattice material and minimum weight design, Acta Mechanica Sinica, 30, 2, 2014. Crossref

  4. Yang D. S., Zhang H. W., Zhang S., Lu M. K., A multiscale strategy for thermo-elastic plastic stress analysis of heterogeneous multiphase materials, Acta Mechanica, 226, 5, 2015. Crossref

  5. Zhang H. W., Wu J. K., Lv J., A new multiscale computational method for elasto-plastic analysis of heterogeneous materials, Computational Mechanics, 49, 2, 2012. Crossref

  6. Zhang H.W., Zhou Q., Zheng Y.G., A multi-scale method for thermal conduction simulation in granular materials, Computational Materials Science, 50, 10, 2011. Crossref

  7. Ren Mingfa, Cong Jie, Wang Bo, Wang Lei, Extended multiscale finite element method for large deflection analysis of thin-walled composite structures with complicated microstructure characteristics, Thin-Walled Structures, 130, 2018. Crossref

  8. Ren Mingfa, Cong Jie, Wang Lei, Wang Bo, An improved multiscale finite element method for nonlinear bending analysis of stiffened composite structures, International Journal for Numerical Methods in Engineering, 118, 8, 2019. Crossref

  9. Zhang H. W., Wu J. K., Fu Z. D., Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials, Computational Mechanics, 45, 6, 2010. Crossref

  10. Jagiello Elias, Muñoz-Rojas Pablo Andrés, An Extended Multiscale Finite Element Method (EMsFEM) Analysis of Periodic Truss Metamaterials (PTMM) Designed by Asymptotic Homogenization, Latin American Journal of Solids and Structures, 18, 2, 2021. Crossref

  11. Letov N., Zhao Y. F., VOLUMETRIC CELLS: A FRAMEWORK FOR A BIO-INSPIRED GEOMETRIC MODELLING METHOD TO SUPPORT HETEROGENEOUS LATTICE STRUCTURES, Proceedings of the Design Society: DESIGN Conference, 1, 2020. Crossref

  12. Zhang H.W., Yang D.S., Zhang S., Zheng Y.G., Multiscale nonlinear thermoelastic analysis of heterogeneous multiphase materials with temperature-dependent properties, Finite Elements in Analysis and Design, 88, 2014. Crossref

  13. Liu H., Zhang H.W., An equivalent multiscale method for 2D static and dynamic analyses of lattice truss materials, Advances in Engineering Software, 75, 2014. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain