Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

IMPROVING THE ACCURACY OF LATTICE BOLTZMANN SIMULATIONS OF LIQUID MICROFLOWS

Том 9, Выпуск 1, 2011, pp. 89-96
DOI: 10.1615/IntJMultCompEng.v9.i1.70
Get accessGet access

Краткое описание

The simulation of incompressible flows at very low Reynolds numbers (Stokes regime) with the standard lattice Boltzmann method (collision-propagation algorithm) is hindered by a limitation of accuracy due to the relationship between viscosity and the Mach and Reynolds numbers. We present a multirelaxation-time lattice-Boltzmann method with modified equilibrium moments that allows improvement of accuracy for a given resolution at very low-Reynolds-number flows. This is paramount for liquid microflow simulations and for multiscale coupling in many practical instances, such as when the fluid motion is highly influenced by bounding or particulate immersed solids. The method as presented is restricted to steady-state flows, which include many fluid-flow applications at the microscale. The viscous flow with slip of a liquid in a long microchannel, for which an analytical solution exists, has been used as the test case.

Ключевые слова: creeping flow, stability analysis, Stokes flow
ЛИТЕРАТУРА
  1. Bouzidi, M., Firdaouss, M., and Lallemand, P., Momentum transfer of a Boltzmann-lattice fluid with boundaries. DOI: 10.1063/1.1399290

  2. Chapman, S. and Cowling, T., The Mathematical Theory of Non-Uniform Gases.

  3. Chen, S. and Doolen, G., Lattice Boltzmann method for fluid flows. DOI: 10.1146/annurev.fluid.30.1.329

  4. Dellar, P. J., Incompressible limits of lattice Boltzmann equations using multiple relaxation times. DOI: 10.1016/S0021-9991(03)00279-1

  5. d’Humières, D., Generalized lattice-boltzmann equations, AIAA rarefied gas dynamics: Theory and Simulations.

  6. Ginzburg, I. and d’Humières, D., Multireflection boundary conditions for lattice Boltzmann models. DOI: 10.1103/PhysRevE.68.066614

  7. Ginzburg, I., Verhaeghe, F., and d’Humières, D., Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions.

  8. Guo, Z., Zhao, T., and Shi, Y., Preconditioned lattice-Boltzmann method for steady flows.

  9. Harting, J., Kunert, C., and Herrmann, H. J., Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels. DOI: 10.1209/epl/i2006-10107-8

  10. Ho, C. M. and Tai, Y. C., Micro-electro-mechanical-systems (MEMS) and fluid flows. DOI: 10.1146/annurev.fluid.30.1.579

  11. Holdych, D. J., Noble, D. R., Georgiadis, J. G., and Buckius, R. O., Truncation error analysis of lattice Boltzmann methods. DOI: 10.1016/j.jcp.2003.08.012

  12. Izquierdo, S. and Fueyo, N., Preconditioned Navier-Stokes schemes from the generalized lattice Boltzmann equation. DOI: 10.1504/PCFD.2008.018089

  13. Izquierdo, S. and Fueyo, N., Optimal preconditioning of lattice Boltzmann methods. DOI: 10.1016/j.jcp.2009.05.040

  14. Karniadakis, G., Beskok, A., and Aluru, N. R., Microflows and Nanoflows: Fundamentals and Simulation.

  15. Lallemand, P. and Luo, L.-S., Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. DOI: 10.1103/PhysRevE.61.6546

  16. Mei, R., Yu, D., Shyy,W., and Luo, L.-S., Force evaluation in the lattice Boltzmann method involving curved geometry. DOI: 10.1103/PhysRevE.65.041203

  17. Noble, D. R., Chen, S. Y., Georgiadis, J. G., and Buckius, R. O., A consistent hydrodynamic boundary-condition for the lattice Boltzmann method. DOI: 10.1063/1.868767

  18. Premnath, K. N., Pattison, M. J., and Banerjee, S., Steady state convergence acceleration of the generalized lattice Boltzmann equation with forcing term through preconditioning. DOI: 10.1016/j.jcp.2008.09.028

  19. Shan, X. W., Yuan, X. F., and Chen, H. D., Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation. DOI: 10.1017/S0022112005008153

  20. Siebert, D. N., Hegele Jr., L. A., and Philippi, P. C., Lattice Boltzmann equation linear stability analysis: Thermal and athermal models. DOI: 10.1103/PhysRevE.77.026707

  21. Sterling, J. and Chen, S., Stability analysis of lattice Boltzmann methods. DOI: 10.1006/jcph.1996.0016

  22. Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.

  23. Turkel, E. and Vatsa, V. N., Local preconditioners for steady and unsteady flow applications. DOI: 10.1051/m2an:2005021

  24. Usta, O. B., Ladd, A. J. C., and Butler, J. E., Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries. DOI: 10.1063/1.1854151

  25. Yu, D., Mei, R., Luo, L.-S., and Shyy, W., Viscous flow computations with the method of lattice Boltzmann equation. DOI: 10.1016/S0376-0421(03)00003-4

  26. Zhang, Y., Qin, R., and Emerson, D., Lattice Boltzmann simulation of rarefied gas flows in microchannels. DOI: 10.1103/PhysRevE.71.047702

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain