Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i4.10
pages 357-368

Creep of a C-S-H Gel: Micromechanical Approach

Julien Sanahuja
Lafarge Centre de Recherche, 95 rue du Montmurier, BP 15, 38291 Saint-Quentin Fallavier cedex, France; Presently at EDF R&D, Departement MMC, Site des Renardieres, Avenue des Renardieres, E´cuelles, 77818 Moret sur Loing cedex, France
Luc Dormieux
LMSGC, Institut Navier, Ecole Nationale des Ponts et Chaussees

Краткое описание

Both clays and calcium silicate hydrates (the main hydration products of Portland cements) exhibit a microstructure made up of lamellar particles. The microscopic mechanism responsible for the macroscopic creep of such materials is often described as the sliding of the sheets one onto the other. This paper proposes a micromechanical approach to estimate the macroscopic creep behavior rising from this microscopic mechanism. The asymptotic evolution of effective creep at both short and large times is especially investigated. The influence of the shape of the particles is also quantitatively discussed.

Ключевые слова: creep, micromechanics, homogenization, C-S-H

ЛИТЕРАТУРА

  1. Abate, J. and Whitt, W., A unified framework for numerically inverting Laplace transforms. DOI: 10.1287/ijoc.1050.0137

  2. Acker, P., Micromechanical analysis of creep and shrinkage mechanisms, in Creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials.

  3. Barbarulo, R., Comportement des Matériaux Cimentaires: Actions des Sulfates et de la Température.

  4. Benboudjema, F., Modélisation des Déformations Différées du Béton sous Sollicitations Biaxiales, Application aux Enceintes de Confinement de Bâtiments Réacteurs des Centrales Nucléaires.

  5. Buryachenko, V., Micromechanics of Heterogeneous Materials.

  6. Courault, A.-C., Stoechiometrie des C-S-H et Proprietes dans Différents Environnements Chimiques, Modélisation Expérimentale.

  7. Dormieux, L., Lemarchand, E., and Sanahuja, J., Comportement macroscopique des materiaux poreux à microstructure en feuillets. DOI: 10.1016/j.crme.2006.03.008

  8. Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems. DOI: 10.1098/rspa.1957.0133

  9. Garrault, S., Finot, E., Lesniewska, E., and Nonat, A., Study of C-S-H growth on C3S surface during its early hydration. DOI: 10.1007/BF02482139

  10. Gaver, D. P., Observing stochastic processes and approximate transform inversion. DOI: 10.1287/opre.14.3.444

  11. Gmira, A., Etude Texturale et Thermodynamique d’Hydrates Modéles du Ciment.

  12. Jennings, H. M., Thomas, J. J., Gevrenov, J. S., Constantinides, G., and Ulm, F. J., Nanostructure of C-S-H gel in cement paste as a function of curing conditions and relative humidity.

  13. Lohtia, R. P., Mechanism of creep in concrete.

  14. Nonat, A., Courault, A.-C., and Damidot, D., A new model describing the variation of Ca/Si ratio with lime concentration in solution.

  15. Nonat, A., The structure and stoichiometry of the C-S-H. DOI: 10.1016/j.cemconres.2004.04.035

  16. Ruetz, W., An hypothesis for the creep of the hardened cement paste and the influence of simultaneous shrinkage.

  17. Sanahuja, J., Dormieux, L., and Chanvillard, G., Modelling elasticity of a hydrating cement paste. DOI: 10.1016/j.cemconres.2007.07.003

  18. Sanahuja, J., Dormieux, L., and Chanvillard, G., A reply to the discussion “Does C-S-H particle shape matter?”. DOI: 10.1016/j.cemcornes.2008.03.024

  19. Stehfest, H., Algorithm 368: Numerical inversion of Laplace transforms. DOI: 10.1145/361953.361969

  20. Tamtsia, B. T. and Beaudoin, J. J., Basic creep of hardened cement paste, A re-examination of the role of water. DOI: 10.1016/S0008-8846(00)00279-9

  21. Ulm, F.-J. and Jennings, H. M., Does C-S-H particle shape matter?. DOI: 10.1016/j.cemconres.2008.03.023

  22. Wittmann, F. H., Creep and shrinkage mechanisms.


Articles with similar content:

DYNAMICS OF NANOSCALE VOID-FIBER ASSEMBLY FOR MATION INIRRADIATED AMORPHOUS MATERIALS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 1
Qiangmin Wei, Wei Lu, Lumin Wang, Kun-Dar Li
STOCHASTIC PROCESSES OF {1012} DEFORMATION TWINNING IN HEXAGONAL CLOSE-PACKED POLYCRYSTALLINE ZIRCONIUM AND MAGNESIUM
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
Irene J. Beyerlein, R. J. McCabe, C. N. Tome
IDENTIFICATION AND PROBABILISTIC MODELING OF MESOCRACK INITIATIONS IN 304L STAINLESS STEEL
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
L. Vincent, F. Hild, J. Rupil, Stephane Roux
Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri
VALIDATION OF THE DUAL-PHASE STEEL FAILURE MODEL AT THE MICROSCALE
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 5
Yuriy Ososkov, Lukasz Madej, David S. Wilkinson, Konrad Perzyński, Mukesh Jain, Jiangting Wang