Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

APPLICATION OF THE MULTISCALE FEM TO THE MODELING OF NONLINEAR COMPOSITES WITH A RANDOM MICROSTRUCTURE

Том 10, Выпуск 3, 2012, pp. 213-227
DOI: 10.1615/IntJMultCompEng.2012002059
Get accessGet access

Краткое описание

In this contribution the properties and application of the multiscale finite element program MSFEAP are presented. This code is developed on basis of coupling the homogenization theory with the finite element method. According to this concept, the investigation of an appropriately chosen representative volume element yields the material parameters needed for the simulation of a macroscopic body. The connection of scales is based on the principle of volume averaging and the Hill-Mandel macrohomogeneity condition. The latter leads to the determination of different types of boundary conditions for the representative volume element and in this way to the postulation of a well-posed problem at this level. The numerical examples presented in the contribution investigate the effective material behavior of microporous media. An isotropic and a transversally anisotropic microstructure are simulated by choosing an appropriate orientation and geometry of the representative volume element in each Gauss point. The results are verified by comparing them with Hashin-Shtrikman's analytic bounds. However, the chosen examples should be understood as simply an illustration of the program application, while its main feature is a modular structure suitable for further development.

ЛИТЕРАТУРА
  1. Bathe, K. J., Finite Element Procedures.

  2. Budianski, B., On the elastic moduli of some heterogeneous materials. DOI: 10.1016/0022-5096(65)90011-6

  3. Castañeda, P. P., The effective mechanical properties of nonlinear isotropic composites. DOI: 10.1016/0022-5096(91)90030-R

  4. Castañeda, P. P., New variational principles in plasticity and their application to composite materials. DOI: 10.1016/0022-5096(92)90050-C

  5. Castañeda, P. P., Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. DOI: 10.1016/S0022-5096(01)00099-0

  6. Chaterjee, A., An introduction to the proper orthogonal decomposition.

  7. deBotton, G., Hariton, I., and Socolsky, E. A., Neo-Hookean fibre reinforced composites in finite elasticity. DOI: 10.1016/j.jmps.2005.10.001

  8. Feyel, F. and Chaboche, J.-L., FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. DOI: 10.1016/S0045-7825(99)00224-8

  9. Feyel, F., A multilevel finite element method (FE2) to describe the response of highly-nonlinear structures using generalized continua. DOI: 10.1016/S0045-7825(03)00348-7

  10. Gilbert, P. P. and Panachenko, A., Effective acoustic equations for a two-phase medium with microstructure. DOI: 10.1016/j.mcm.2004.07.002

  11. Gilbert, P. P., Panachenko, A., and Xie, X., Homogenization of viscoelastic matrix in linear frictional contact. DOI: 10.1002/mma.570

  12. Hashin, Z. and Shtrikman, S., On some variational principles in anisotropic and nonhomogeneous elasticity. DOI: 10.1016/0022-5096(62)90004-2

  13. Hashin, Z. and Shtrikman, S., A variational approach to the theory of the elastic behaviour of polycrystals. DOI: 10.1016/0022-5096(62)90005-4

  14. Hashin, Z. and Shtrikman, S., A variational approach to the theory of the elastic behaviour of multiphase materials. DOI: 10.1016/0022-5096(63)90060-7

  15. Hazanov, S., Hill condition and overall properties of composites. DOI: 10.1007/s004190050173

  16. Hazanov, S.,, On apparent properties of nonlinear heterogeneous bodies smaller than the representative volume element.

  17. Hill, R., The elastic behaviour of a crystalline aggregate. DOI: 10.1088/0370-1298/65/5/307

  18. Hill, R., Elastic properties of reinforced solids: Some theoretical principles. DOI: 10.1016/0022-5096(63)90036-X

  19. Hill, R., On constitutive macro-variables for heterogeneous solids at finite strain. DOI: 10.1098/rspa.1972.0001

  20. Huet, C., Universal conditions for assimilation of a heterogeneous material to an effective medium.

  21. Huet, C., On the definition and experimental determination of effective constitutive equations for assimilating heterogeneous materials. DOI: 10.1016/0093-6413(84)90064-8

  22. Huet, C., Application of variational concepts to size effects in elastic heterogeneous bodies. DOI: 10.1016/0022-5096(90)90041-2

  23. Hughes, T. J. R., The Finite Element Method.

  24. Ilic, S., Application of the Multiscale FEM to the Modeling of Composite Materials.

  25. Ilic, S., Hackl, K., and Gilbert, R. P., Application of the multiscale FEM to the modelling of cancellous bone. DOI: 10.1007/s10237-009-0161-6

  26. Ilic, S., User manual for the multiscale FE program MSFEAP.

  27. Kröner, E., Elastic moduli of perfectly disordered composite materials. DOI: 10.1016/0022-5096(67)90026-9

  28. Lebensohn, R. A., N-site modeling of a 3D viscoplastic polycrystal using fast Fourier Transfrom.

  29. Lopez-Pamies, O. and Castañeda, P. P.,, Second-order estimated for the macroscopic response and loss of ellipticity in porous rubbers at large deformations. DOI: 10.1007/s10659-005-1405-z

  30. Miehe, C., Schotte, J., and Lambrecht, M., Homogenisation of inelastic solid materials at finite strains based on incremental minimization principles. DOI: 10.1016/S0022-5096(02)00016-9

  31. Michel, J. C. and Suquet, P., Nonuniform transformation field analysis. DOI: 10.1016/S0020-7683(03)00346-9

  32. Michel, J. C. and Suquet, P., Computational analysis of nonlinear composite structures using the nonuniform transformation fields analysis. DOI: 10.1016/j.cma.2003.12.071

  33. Mori, T. and Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions. DOI: 10.1016/0001-6160(73)90064-3

  34. Moulinec, H. and Suquet, P., Intraphase strain heterogeneity in nonlinear composites: A computational approach. DOI: 10.1016/S0997-7538(03)00079-2

  35. Oden, J. T. and Zohdi, T. I., Analysis and adaptive modeling of highly heterogeneous elastic structures. DOI: 10.1016/S0045-7825(97)00032-7

  36. Schröder, J., Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Stabilitäts Problemen.

  37. Simo, J. C. and Hughes, T. J. R., Computational Inelasticity.

  38. Suquet, P., Effective Properties of Nonlinear Composites.

  39. Talbot, D. R. S. and Willis, J. R., Variational principles for inhomogeneous non-linear media. DOI: 10.1093/imamat/35.1.39

  40. Taylor, R. L., Feap Usear Manual.

  41. Terada, K. and Kikuchi, N., A class of general algorithms for multi-scale analysis of heterogeneous media. DOI: 10.1016/S0045-7825(01)00179-7

  42. Willis, J. R., Bounds and self-consistent estimates for the overall properties of anisotropic composites. DOI: 10.1016/0022-5096(77)90022-9

  43. Yvonet, J. and He, Q.-C., The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. DOI: 10.1016/j.jcp.2006.09.019

  44. Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method.

  45. Zohdi, T. I., Oden, J. T., and Rodin, G. J., Hierarchical modeling of heterogeneous bodies. DOI: 10.1016/S0045-7825(96)01106-1

  46. Zohdi, T. I. and Wriggers, P., A domain decomposition method for bodies with heterogeneous microstructure based on the material regularization. DOI: 10.1016/S0020-7683(98)00124-3

  47. Zohdi, T. I., Wriggers, P., and Huet, C., A method of substructuring large-scale computational micromechanical problems.

ЦИТИРОВАНО В
  1. Klinge S., Bartels A., Steinmann P., The multiscale approach to the curing of polymers incorporating viscous and shrinkage effects, International Journal of Solids and Structures, 49, 26, 2012. Crossref

  2. Klinge Sandra, Determination of the geometry of the RVE for cancellous bone by using the effective complex shear modulus, Biomechanics and Modeling in Mechanobiology, 12, 2, 2013. Crossref

  3. Öhman Mikael, Larsson Fredrik, Runesson Kenneth, Computational homogenization of liquid-phase sintering with seamless transition from macroscopic compressibility to incompressibility, Computer Methods in Applied Mechanics and Engineering, 266, 2013. Crossref

  4. Klinge Sandra, Hackl Klaus, Gilbert Robert P., Investigation of the influence of reflection on the attenuation of cancellous bone, Biomechanics and Modeling in Mechanobiology, 12, 1, 2013. Crossref

  5. Hosseini Kordkheili S. A., Toozandehjani H., Effective mechanical properties of unidirectional composites in the presence of imperfect interface, Archive of Applied Mechanics, 84, 6, 2014. Crossref

  6. Simon J.-W., Höwer D., Stier B., Reese S., Meso-mechanically motivated modeling of layered fiber reinforced composites accounting for delamination, Composite Structures, 122, 2015. Crossref

  7. Yang Ping, Zhang Liqiang, Tang Yunqing, Gong Jie, Zhao Yanfang, Yang Jianming, An atomic-continuum multiscale modeling approach for interfacial thermal behavior between materials, Applied Mathematical Modelling, 38, 14, 2014. Crossref

  8. Klinge Sandra, Steinmann Paul, Inverse analysis for heterogeneous materials and its application to viscoelastic curing polymers, Computational Mechanics, 55, 3, 2015. Crossref

  9. Klinge Sandra, Steinmann Paul, Determination of material parameters of heterogeneous viscoelastic curing polymers, PAMM, 15, 1, 2015. Crossref

  10. Stier Bertram, Simon Jaan-Willem, Reese Stefanie, Numerical and experimental investigation of the structural behavior of a carbon fiber reinforced ankle-foot orthosis, Medical Engineering & Physics, 37, 5, 2015. Crossref

  11. Öhman Mikael, Larsson Fredrik, Runesson Kenneth, Computational homogenization of liquid-phase sintering based on a mixed variational format, GAMM-Mitteilungen, 39, 2, 2016. Crossref

  12. Klinge Sandra, Aygün Serhat, Mosler Jörn, Holzapfel Gerhard A., Cross-linked actin networks: Micro- and macroscopic effects, PAMM, 16, 1, 2016. Crossref

  13. Simon Jaan-Willem, Höwer Daniel, Stier Bertram, Reese Stefanie, Fish Jacob, A regularized orthotropic continuum damage model for layered composites: intralaminar damage progression and delamination, Computational Mechanics, 60, 3, 2017. Crossref

  14. Wiegold Tillmann, Klinge Sandra, Aygün Serhat, Gilbert Robert P., Holzapfel Gerhard A., Viscoelasticity of cross‐linked actin network embedded in cytosol, PAMM, 18, 1, 2018. Crossref

  15. Klinge S., Aygün S., Gilbert R. P., Holzapfel G. A., Multiscale FEM simulations of cross-linked actin network embedded in cytosol with the focus on the filament orientation, International Journal for Numerical Methods in Biomedical Engineering, 34, 7, 2018. Crossref

  16. Saeb Saba, Steinmann Paul, Javili Ali, Aspects of Computational Homogenization at Finite Deformations: A Unifying Review From Reuss' to Voigt's Bound, Applied Mechanics Reviews, 68, 5, 2016. Crossref

  17. Klinge Sandra, Bartels Alexander, Hackl Klaus, Steinmann Paul, Viscoelastic effects and shrinkage as accompanying phenomena of the curing of polymers. Single- and multiscale effects, PAMM, 12, 1, 2012. Crossref

  18. Aygün Serhat, Klinge Sandra, Coupled thermomechanical model for strain‐induced crystallization in polymers, PAMM, 19, 1, 2019. Crossref

  19. Abali Bilen Emek, Vorel Jan, Wan-Wendner Roman, Thermo-mechano-chemical modeling and computation of thermosetting polymers used in post-installed fastening systems in concrete structures, Continuum Mechanics and Thermodynamics, 2020. Crossref

  20. Firooz S., Steinmann P., Javili A., Homogenization of Composites With Extended General Interfaces: Comprehensive Review and Unified Modeling, Applied Mechanics Reviews, 73, 4, 2021. Crossref

  21. Han Bin, Li Yunyu, Wang Zeyu, Gu Xi, Zhang Qi, Temperature Effects on the Compressive Behaviors of Closed-Cell Copper Foams Prepared by Powder Metallurgy, Materials, 14, 21, 2021. Crossref

  22. Klinge Sandra, Wiegold Tillmann, Aygün Serhat, Gilbert Robert P., Holzapfel Gerhard A., On the mechanical modeling of cell components, PAMM, 20, 1, 2021. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain