Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2012002511
pages 249-259


A. R. Ahmadi
International Center for Science and High Technology and Environmental Sciences, Kerman, Iran
H. Farahmand
Department of Mechanical Engineering, Islamic Azad University of Kerman Branch, Kerman, Iran
S. Arabnejad
Young Researchers Club, Kerman branch, Islamic Azad University, Kerman, Iran

Краткое описание

In this article, elastic buckling of rectangular flexural micro plates (FMPs), using a higher continuity p-version finite-element framework based on Galerkin formulation, is investigated. The invariant form of governing equation for microplates with nonlocal effects based on "modified couple stress theory" is extended for buckling analysis of FMPs by considering the strain gradient effects, for which the constitutive equation of the strain gradient model contains only one constant. The Galerkin weak form of the governing equation is derived and subsequently solved for a variety of boundary conditions, using higher continuity p finite elements, to extract critical buckling loads. Here the computational procedure is verified by comparing the results to those of the classical theory and microplate studies reported in literature. Investigations indicate that the length scale parameter affects the computed flexural stiffness of a plate directly proportional to the value of gradient coefficient considered for that plate. Hence there is a strong influence of length scale parameter on the value of the buckling load. Depending on boundary conditions and the length scale parameter value, the classical plate model severely underestimates (up to 90%) the buckling load of microplates. Therefore it is concluded that the classical plate theory cannot be used to predict structural response when length scale effects are present.


  1. Aifantis, E., The physics of plastic deformation. DOI: 10.1016/0749-6419(87)90021-0

  2. Chong, A. C. M. and Lam, D. C. C., Strain gradient plasticity effect in indentation hardness of polymers. DOI: 10.1557/JMR.1999.0554

  3. Clarke, D. R. and Ma, Q., Size dependent hardness of silver single crystals. DOI: 10.1557/JMR.1995.0853

  4. Cosserat, E. and Cosserat, F., Theorie des Corps Deformables.

  5. Eringen, C. A., Linear theory of micropolar elasticity.

  6. Eshelby, J. D. and Stroh, A. N., Dislocations in thin plates.

  7. Exadaktylos, G. E. and Vardoulakis, I., Microstructure in linear elasticity and scale effects: A reconsideration of basic rock mechanics and rock fracture mechanics. DOI: 10.1016/S0040-1951(01)00047-6

  8. Farahmand, H. and Arabnejad, S., Developing a novel finite elastic approach in strain gradient theory for microstructures. DOI: 10.1615/IntJMultCompEng.v8.i4

  9. Fischer, F. D., Rammerstorfer, F. G., and Friedl, N., Residual stress-induced centre wave buckling of rolled strip metal. DOI: 10.1115/1.1532322

  10. Fish, J. and Kuznetsov, S., Computational continua. DOI: 10.1002/nme.2918

  11. Fleck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W., Strain gradient plasticity: Theory and experiment. DOI: 10.1016/0956-7151(94)90502-9

  12. Freund, L. B. and Suresh, S., Thin Film Materials.

  13. Gorman, D. J. and Singhal, R. K., A superposition Rayleigh-Ritz method for free vibration analysis of non-uniformly tensioned membranes. DOI: 10.1006/jsvi.1993.1135

  14. Koiter, W. T., Couple stresses in the theory of elasticity.

  15. Lakes, R., Experimental methods for study of Cosserat elastic solids and other generalized elastic continua.

  16. Mindlin, R. D., Micro-structure in linear elasticity. DOI: 10.1007/BF00248490

  17. Mindlin, R. D. and Eshel, N. N., On first strain-gradient theories in linear elasticity. DOI: 10.1016/0020-7683(68)90036-X

  18. Mitchell, L. H. and Head, A. K., Buckling of a dislocated plate. DOI: 10.1016/0022-5096(61)90030-8

  19. Nix, W. D., Mechanical properties of thin films. DOI: 10.1007/BF02666659

  20. Papargyri-Beskou, S. and Beskos, D. E., Static, stability and dynamic analysis of gradient elastic fexural Kirchhof plates. DOI: 10.1007/s00419-007-0166-5

  21. Poole, W. J., Ashby, M. F., and Fleck, N. A., Micro-hardness of annealed and work-hardened copper polycrystals. DOI: 10.1016/1359-6462(95)00524-2

  22. Rammerstorfer, F. G., Fischer, F. D., and Friedl, N., Buckling of free infinite strips under residual stresses and global tension. DOI: 10.1115/1.1357519

  23. Stelmashenko, N. A., Walls, M. G., Brown, L. M., and Milman, Y. V., Microindentations on W and Mo oriented single crystals: An STM study. DOI: 10.1016/0956-7151(93)90100-7

  24. Steolken, J. S. and Evans, A. G., A microbend test method for measuring the plasticity length scale. DOI: 10.1016/S1359-6454(98)00153-0

  25. Surana, K. S., Petti, S. R., Ahmadi, A. R., and Reddy, J. N., On p-version hierarchical interpolation functions for higher order continuity finite element models.

  26. Tiersten, H. F. and Bleustein, J. L., Generalized elastic continua.

  27. Toupin, R. A., Elastic materials with couple-stresses. DOI: 10.1007/BF00253945

  28. Vardoulakis, I. and Sulem, J., Bifurcation Analysis in Geomechanics.