Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i4.60
pages 425-443

STOCHASTIC DESIGN AND CONTROL IN RANDOM HETEROGENEOUS MATERIALS

Raphael Sternfels
School of Civil and Environmental Engineering, 372 Hollister Hall, Cornell University, Ithaca, New York 14853, USA
Phaedon-Stelios Koutsourelakis
Continuum Mechanics Group, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany

Краткое описание

This paper discusses a sampling framework that enables optimization of complex systems characterized by high-dimensional uncertainties and design variables. We are especially concerned with problems relating to random heterogeneous materials where uncertainties arise from the stochastic variability of their properties. In particular, we reformulate topology optimization problems to account for the design of truly random composites. In addition, we address the optimal prescription of input loads/excitations in order to achieve a target response by the random material system. The methodological advances proposed in this paper consist of an adaptive sequential Monte Carlo scheme that economizes the number of runs of the forward solver and allows the analyst to identify several local maxima that provide important information with regard to the robustness of the design. We further propose a principled manner of introducing information from approximate models that can ultimately lead to further reductions in computational cost.

ЛИТЕРАТУРА

  1. Amzal, B. A., Bois, F., Parent, E., and Robert, C. P., Bayesian-optimal design via interacting particle systems. DOI: 10.1198/016214505000001159

  2. Bendsoe, M. P. and Sigmund, O., Material interpolation schemes in topology optimization. DOI: 10.1007/s004190050248

  3. Berk, N. F., Scattering properties of leveled-wave model for random morphologies. DOI: 10.1103/PhysRevA.44.5069

  4. Besag, J., Markov Chain Monte Carlo for Statistical Inference.

  5. Burkardt, J., Du, Q., and Gunzburger, M., Reduced Order Modeling of Complex Systems.

  6. Charmpis, D. C., Schueller, G. I., and Pellissetti, M. F., The need for linking micromechanics of materials with stochastic finite elements: A challenge for materials science. DOI: 10.1016/j.commatsci.2007.02.014

  7. Chopin, N., Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. DOI: 10.1214/009053604000000698

  8. Del Moral, P., Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications.

  9. Del Moral, P., Doucet, A., and Jasra, A., Sequential Monte Carlo for Bayesian Computation (with discussion).

  10. Del Moral, P., Doucet, A., and Jasra, A., Sequential Monte Carlo samplers. DOI: 10.1111/j.1467-9868.2006.00553.x

  11. Doucet, A., de Freitas, J. F. G., and Gordon, N. J.,, Sequential Monte Carlo Methods in Practice.

  12. Gersborg-Hansen, A., Bendsoe, M. P., and Sigmund, O., Topology optimization of heat conduction problems using the finite volume method. DOI: 10.1007/s00158-005-0584-3

  13. Ghanem, R. and Spanos, P., Stochastic Finite Elements: A Spectral Approach.

  14. Gibiansky, L. V. and Sigmund, O., Multiphase composites with extremal bulk modulus. DOI: 10.1016/S0022-5096(99)00043-5

  15. Guest, J. K. and Igusa, T., Structural optimization under uncertain loads and nodal locations. DOI: 10.1016/j.cma.2008.04.009

  16. Johansen, M. A., Doucet, A., and Davy, M., Particle methods for maximum likelihood parameter estimation in latent variable models. DOI: 10.1007/s11222-007-9037-8

  17. Kennedy, M. C. and O’Hagan, A., Predicting the output from a complex computer code when fast approximations are available. DOI: 10.1093/biomet/87.1.1

  18. Koutsourelakis, P. S., Probabilistic characterization and simulation of multi-phase random media. DOI: 10.1016/j.probengmech.2005.11.004

  19. Koutsourelakis, P. S., Accurate uncertainty quantification using inaccurate models. DOI: 10.1137/080733565

  20. Koutsourelakis, P. S. and Deodatis, G., Simulation of binary random processes with applications to two-phase random media. DOI: 10.1061/(ASCE)0733-9399(2005)131:4(397)

  21. Kück, H., de Freitas, N., and Doucet, A., SMC samplers for Bayesian pptimal nonlinear design.

  22. Liu, J. S., Monte Carlo strategies in scientific computing.

  23. MacEachern, S. N., Clyde, M., and Liu, J. S., Sequential importance sampling for nonparametric bayes models: The next generation.

  24. Müller, P., Simulation Based Optimal Design.

  25. Robert, C. P. and Casella, G., Monte Carlo Statistical Methods.

  26. Roberts, A. P. and Teubner, M., Transport properties of heterogeneous materials derived from gaussian random fields: Bounds and simulation. DOI: 10.1103/PhysRevE.51.4141

  27. Roberts, G. O. and Rosenthal, J. S., Optimal scaling for various metropolis hastings algorithms. DOI: 10.1214/ss/1015346320

  28. Romkes, A., Oden, J. T., and Vemaganti, K., Multi-scale goal-oriented adaptive modeling of random heterogeneous materials. DOI: 10.1016/j.mechmat.2005.06.028

  29. Schueller, G. I. and Jensen, H. A., Computational methods in optimization considering uncertainties–An overview. DOI: 10.1016/j.cma.2008.05.004

  30. Shinozuka, M. and Deodatis, G., Simulation of multi-dimensional stochastic processes by spectral representation.

  31. Sigmund, O., Materials with prescribed constitutive parameters–An inverse homogenization problem. DOI: 10.1016/0020-7683(94)90154-6

  32. Sigmund, O., Tailoring materials for specific needs. DOI: 10.1177/1045389X9400500602

  33. Sigmund, O., Tailoring materials with prescribed elastic properties. DOI: 10.1016/0167-6636(94)00069-7

  34. Sigmund, O., On the design of compliant mechanisms using topology optimization.

  35. Sigmund, O., A new class of extremal composites. DOI: 10.1016/S0022-5096(99)00034-4

  36. Sigmund, O., Topology optimization: A tool for the tailoring of structures and materials. DOI: 10.1098/rsta.2000.0528

  37. Sigmund, O., Manufacturing tolerant topology optimization. DOI: 10.1007/s10409-009-0240-z

  38. Sigmund, O. and Torquato, S., Composites with extremal thermal expansion coefficients. DOI: 10.1063/1.117961

  39. Sigmund, O. and Torquato, S., Design of materials with extreme thermal expansion using a three-phase topology optimization method. DOI: 10.1016/S0022-5096(96)00114-7

  40. Sigmund, O. and Torquato, S., Design of smart composite materials using topology optimization. DOI: 10.1088/0964-1726/8/3/308

  41. Stefanou, G. and Papadrakakis, M., Stochastic finite element analysis of shells with combined random material and geometric properties. DOI: 10.1016/j.cma.2003.10.001

  42. Sundararaghavan, V. and Zabaras, N., A multi-length scale sensitivity analysis for the control of texture-dependent properties in deformation processing. DOI: 10.1016/j.ijplas.2007.12.005

  43. Torquato, S., Random Heterogeneous Materials.

  44. Vel, S. S. and Goupee, A. J., Multiscale thermoelastic analysis of random heterogeneous materials, Part I: Microstructure characterization and homogenization of material properties. DOI: 10.1016/j.commatsci.2009.11.015

  45. Wadbro, E. and Berggren, M., Megapixel topology optimization on a graphics processing unit. DOI: 10.1137/070699822

  46. Xu, X. F., Chen, X., and Shen, L. H., A green-function-based multiscale method for uncertainty quantification of finite body random heterogeneous materials. DOI: 10.1016/j.compstruc.2009.05.009

  47. Yeong, C. L. Y. and Torquato, S., Reconstructing random media I and II.

  48. Zabaras, N. and Ganapathysubramanian, B., A scalable framework for the solution of stochastic inverse problems using a sparse grid collocation approach. DOI: 10.1016/j.jcp.2008.01.019


Articles with similar content:

REDUCED ORDER MODELING FOR NONLINEAR MULTI-COMPONENT MODELS
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 4
Hany S. Abdel-Khalik, Christopher Kennedy, Jason Hite, Youngsuk Bang
CLUSTERING-BASED COLLOCATION FOR UNCERTAINTY PROPAGATION WITH MULTIVARIATE DEPENDENT INPUTS
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 1
D. T. Crommelin, Anne W. Eggels, J. A. S. Witteveen
GRADIENT-BASED STOCHASTIC OPTIMIZATION METHODS IN BAYESIAN EXPERIMENTAL DESIGN
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 6
Youssef Marzouk, Xun Huan
LOW-COST MULTI-DIMENSIONAL GAUSSIAN PROCESS WITH APPLICATION TO UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 4
Guang Lin, Bledar A. Konomi
BIAS MINIMIZATION IN GAUSSIAN PROCESS SURROGATE MODELING FOR UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 4
Vadiraj Hombal, Sankaran Mahadevan