Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i4.50
pages 409-423

INVERSE STOCHASTIC HOMOGENIZATION ANALYSIS FOR A PARTICLE-REINFORCED COMPOSITE MATERIAL WITH THE MONTE CARLO SIMULATION

Sei-ichiro Sakata
Department of Electronic and Control Systems Engineering, Interdisciplinary Faculty of Science and Engineering, Shimane University, Japan
F. Ashida
Department of Electronic and Control Systems Engineering, Interdisciplinary Faculty of Science and Engineering, Shimane University, Japan
Y. Shimizu
Graduate School of Shimane University, Japan

Краткое описание

This paper proposes a numerical method for identifying microscopic randomness in an elastic property of a component material of a particle-reinforced composite material. Some reports on the stochastic homogenization analysis considering a microscopic random variation can be found in the literature. A microscopic stress field is influenced by the microscopic variation, and stochastic microscopic stress analysis is also important. In the previous reports it is assumed that the microscopic random variation is known. However, it is sometimes difficult to identify a microscopic random variation in a composite material, especially after the manufacturing process. Therefore, an identification process for microscopic randomness by solving an inverse problem is needed for the stochastic microscopic stress analysis. This kind of problem is called "inverse stochastic homogenization." In this paper solving an inverse stochastic homogenization problem is attempted with inverse homogenization analysis and Monte Carlo simulation is used for the stochastic homogenization analysis. The inverse homogenization analysis is performed with the homogenization method and an optimization technique. Some techniques for the inverse stochastic homogenization analysis with the Monte Carlo simulation are developed. With numerical results, validity and accuracy of the methods are discussed.

ЛИТЕРАТУРА

  1. Grigoriu, M., Simulation of stationary non-Gaussian translation processes. DOI: 10.1061/(ASCE)0733-9399(1998)124:2(121)

  2. Guedes, M. and Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. DOI: 10.1016/0045-7825(90)90148-F

  3. Kaminski, M. and Kleiber, M., Perturbation based stochastic finite element method for homogenization of two-phase elastic composites. DOI: 10.1016/S0045-7949(00)00116-4

  4. Kaminski, M., Stochastic finite element method homogenization of heat conduction problem in fiber composites.

  5. Kaminski, M., Generalized perturbation-based stochastic finite element method in elastostatics. DOI: 10.1016/j.compstruc.2006.08.077

  6. Kaminski, M., Sensitivity and randomness in homogenization of periodic fiber-reinforced composites via the response function method. DOI: 10.1016/j.ijsolstr.2008.10.003

  7. Kennedy, J. and Eberhart, R. C., Particle swarm optimization.

  8. Mori, T. and Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions. DOI: 10.1016/0001-6160(73)90064-3

  9. Press, W. H., Teukolski, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in C (Japanese Ed.).

  10. Sakata, S., Ashida, F., Kojima, T., and Zako, M., Three-dimensional stochastic analysis using a perturbation-based homogenization method for homogenized elastic property of inhomogeneous material considering microscopic uncertainty.

  11. Sakata, S., Ashida, F., and Kojima, T., Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method.

  12. Sakata, S., Ashida, F., and Zako, M., Kriging-based approximate stochastic homogenization analysis for composite material. DOI: 10.1016/j.cma.2007.12.011

  13. Sakata, S. and Ashida, F., Ns-Kriging based microstructural optimization applied to minimizing stochastic variation of homogenized elasticity of fiber reinforced composites. DOI: 10.1007/s00158-008-0296-6

  14. Sakata, S., Ashida, F., and Kojima, T., Stochastic homogenization analysis for thermal expansion coefficients of fiber reinforced composites using the equivalent inclusion method with perturbation-based approach. DOI: 10.1016/j.compstruc.2009.12.007

  15. Sakata, S., Ashida, F., and Enya, K., Stochastic analysis of microscopic stress in fiber reinforced composites considering uncertainty in a microscopic elastic property. DOI: 10.1299/jmmp.4.568

  16. Sakata, S., Ashida, F., and Enya, K., Perturbation-based stochastic microscopic stress analysis of a particle reinforced composite material via the stochastic homogenization analysis considering uncertainty in material properties. DOI: 10.1615/IntJMultCompEng.v9.i4.40

  17. Stefanou, G., The stochastic finite element method: Past, present and future. DOI: 10.1016/j.cma.2008.11.007


Articles with similar content:

TRANSITIONAL ANNEALED ADAPTIVE SLICE SAMPLING FOR GAUSSIAN PROCESS HYPER-PARAMETER ESTIMATION
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 4
Alfredo Garbuno-Inigo, F. A. DiazDelaO, Konstantin M. Zuev
COMPUTATION OF THE EFFECTIVE CONDUCTIVITY OF THREE-DIMENSIONAL ORDERED COMPOSITES WITH A THERMALLY-CONDUCTING DISPERSED PHASE
International Heat Transfer Conference 11, Vol.19, 1998, issue
Manuel Ernani C. Cruz
PERTURBATION-BASED STOCHASTIC MICROSCOPIC STRESS ANALYSIS OF A PARTICLE-REINFORCED COMPOSITE MATERIAL VIA STOCHASTIC HOMOGENIZATION ANALYSIS CONSIDERING UNCERTAINTY IN MATERIAL PROPERTIES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
F. Ashida, Sei-ichiro Sakata, K. Enya
MULTISCALE PARAMETER IDENTIFICATION
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 4
Paul Steinmann, Julia Mergheim, Ulrike Schmidt
STOCHASTIC DYNAMIC RESPONSE ANALYSIS OF NONLINEAR STRUCTURES WITH GENERAL NONUNIFORM RANDOM PARAMETERS BY MINIMIZING GL2-DISCREPANCY
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 3
Jianbing Chen, Pengyan Song, Xiaodan Ren