Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v3.i4.50
pages 463-480

Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach

Patrizia Trovalusci
Department of Structural Engineering and Geotechnics Sapienza University of Rome Via Gramsci 53, 00197 Rome, Italy
V. Sansalone
Ente Nuove Tecnologie, Energia e Ambiente, Unità Materiali e Nuove Tecnologie, Centro Ricerche Casaccia,Italy; Lab. de Biomécanique et Biomatériaux Ostéo-Articulaires, CNRS UMR 7052, Université Paris, France
F. Cleri
Ente Nuove Tecnologie, Energia e Ambiente, Unità Materiali e Nuove Tecnologie, Centro Ricerche Casaccia, C.P. 2400, 00100 Roma A.D., Italy

Краткое описание

We present a multiscale model for composite materials based on the theory of multifield continua. Such a model includes additional fields besides the standard stress and deformation, allowing the representation of microstructures in a continuous medium. The multiscale model was implemented in a new finite element code, MUSCAFE. Numerical examples describing a fiber-reinforced composite material with a porous (microcracked) elastic matrix are presented. We first discuss an uncoupled model, in which the microstructural relaxation does not influence the macroscopic displacement field. Then, the first stage of development of a fully coupled model is described. Here, appropriate coupling tensors describe the interaction between displacement and microstructure at the macroscopic level, thereby reflecting the microscopic interaction laws between microstructural elements and the matrix. The latter laws are derived by a combination of theoretical assumptions and atomistic molecular dynamics simulations.


Articles with similar content:

NONLINEAR MULTISCALE HOMOGENIZATION OF CARBON NANOTUBE REINFORCED COMPOSITES WITH INTERFACIAL SLIPPAGE
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 4
Dimitris Savvas, Vissarion Papadopoulos
VARIATIONAL INEQUALITIES FOR HETEROGENEOUS MICROSTRUCTURES BASED ON COUPLE-STRESS THEORY
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 2
Sonjoy Das, Gary F. Dargush, Ali R. Hadjesfandiari, Sourish Chakravarty
Nonlocal Elastic-Damage Interface Mechanical Model
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
Guido Borino, Francesco Parrinello, Boris Failla
A MULTISCALE MICRO-CONTINUUM MODEL TO CAPTURE STRAIN LOCALIZATION IN COMPOSITE MATERIALS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 5
Thibaud Chevalier, Franck J. Vernerey
EFFECTIVE ELASTIC MODULUS OF PERISTATIC BAR WITH PERIODICALLY DISTRIBUTED DAMAGE
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 1
Valeriy A. Buryachenko