Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 18, 2020 Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2020031235
pages 159-180

MULTISCALE ANALYSIS OF IN-PLANE MASONRY WALLS ACCOUNTING FOR DEGRADATION AND FRICTIONAL EFFECTS

Daniela Addessi
Department of Structural and Geotechnical Engineering, University of Rome "Sapienza," Rome, Italy
C. Gatta
Department of Structural and Geotechnical Engineering, University of Rome "Sapienza," Rome, Italy
S. Marfia
Department of Engineering, University of Rome TRE, Rome, Italy
E. Sacco
Department of Structures for Engineering and Architecture, University of Naples "Federico II," Naples, Italy

Краткое описание

A multiscale model for the analysis of the in-plane response of periodic masonry walls is presented. The overall constitutive behavior of the composite material is derived through a homogenization procedure based on the Transformation Field Analysis properly extended to the case of interfaces. At micro level, masonry is modeled as the assembly of expanded units and interfaces representing both mortar and unit-mortar interaction. A nonlinear constitutive law accounting for damage and friction phenomena is considered for joints, whereas a linear elastic constitutive relationship is assumed for the blocks. The proposed multiscale procedure is implemented into a Finite Element code, where the mesh-dependency occurring in presence of strain softening response is overcome by adopting a nonlocal integral formulation at macro level. Validation examples are carried out: first, the response of a representative masonry Unit Cell is analyzed comparing results obtained with the presented homogenization procedure with those recovered by detailed nonlinear finite element analyses. Then, the structural behavior of masonry panels subjected to compression-shear loads is studied. The results obtained with the multiscale model, in terms of global force-displacement response curves and damage distributions, are compared with both micromechanical and experimental outcomes.

ЛИТЕРАТУРА

  1. Addessi, D. and Sacco, E., A Multi-Scale Enriched Model for the Analysis of Masonry Panel, Int. J. Solids Struct., vol. 49, pp. 865-880,2012.

  2. Addessi, D. and Sacco, E., Nonlinear Analysis of Masonry Panels Using a Kinematic Enriched Plane State Formulation, Int. J. Solids Struct, vol. 90, pp. 194-214,2016.

  3. Addessi, D., Sacco, E., and Paolone, A., Cosserat Model for Periodic Masonry Deduced by Nonlinear Homogenization, Eur. J. Mechan.-A/Solids, vol. 29, pp. 724-737,2010.

  4. Alfano, G. and Sacco, E., Combining Interface Damage and Friction in a Cohesive-Zone Model, Int. J. Numer. Methods Eng., vol. 68, no. 5, pp. 542-582,2006.

  5. Casolo, S., Macroscopic Modelling of Structured Materials: Relationship between Orthotopic Cosserat Continuum and Rigid Elements, Int. J. Solids Struct., vol. 43, nos. 3-4, pp. 475-496,2006.

  6. Chettah, A., Mercatoris, B., Sacco, E., and Massart, T., Localization Analysis in Masonry Using Transformation Field Analysis, Eng. Fracture Mechan, vol. 110, pp. 166-188,2013.

  7. Covezzi, F., de Miranda, S., Marfia, S., and Sacco, E., Homogenization of Elastic-Viscoplastic Composites by the Mixed TFA, Comp. Methods Appl. Mechan. Eng., 2017.

  8. D'Altri, A.M., Sarhosis, V., Milani, G., Rots, J., Cattari, S., Lagomarsino, S., Sacco, E., Tralli, A., Castellazzi, G., and de Miranda, S., Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification, Arch. Comput. Methods Eng., vol. 26, pp. 1-33,2019.

  9. De Bellis, M. and Addessi, D., A Cosserat based Multi-Scale Model for Masonry Structures, Int. J. Comput. Eng., vol. 9, no. 5, pp. 543-563,2011.

  10. Dvorak, G. and Bahei-El-Din, A., Inelastic Composite Materials: Transformation Field Analysis and Experiments, in P. Suquet, Ed., Contin. Micromech, CISM Course Lecture, vol. 377, pp. 1-59, 1997.

  11. Fritzen, F. and Bohlke, T., Three-Dimensional Finite Element Implementation of the Nonuniform Transformation Field Analysis, Int. J. Numer. Methods Eng., vol. 278, pp. 186-217,2014.

  12. Fritzen, F. and Leuschner, M., Nonlinear Reduced Order Homogenization of Materials Including Cohesive Interfaces, Comput. Mechan, vol. 56, no. 1,pp. 131-151,2015.

  13. Gambarotta, L. and Lagomarsino, S., Damage Models for the Seismic Response of Brick Masonry Shear Walls. Part II: The Continuum Model and Its Application, Earthquake Eng. Struct. Dynam., vol. 26, pp. 441-462,1997.

  14. Giambanco, G., La Malfa Ribolla, E., and Spada, A., Meshless Meso-Modeling of Masonry in the Computational Homogenization Framework, Meccanica, vol. 53, no. 7, pp. 1673-1697,2018.

  15. Greco, F., Leonetti, L., Luciano, R., and Trovalusci, P., Multiscale Failure Analysis of Periodic Masonry Structures with Traditional and Fiber-Reinforced Mortar Joints, Compos. PartB: Eng., vol. 118, pp. 75-95,2017.

  16. Leonetti, L., Greco, F., Trovalusci, P., Luciano, R., and Masiani, R., A Multiscale Damage Analysis of Periodic Composites Using a Couple-Stress/Cauchy Multidomain Model: Application to Masonry Structures, Compos. PartB, vol. 141, pp. 50-59,2018.

  17. Lofti, H. and Shing, B., Interface Model Applied to Fracture of Masonry Structures, J. Struct. Eng., vol. 120, pp. 63-80,1994.

  18. Lourenco, P.B., Computational Strategies for Masonry Structures, PhD, Delft University of Technology, 1996.

  19. Marfia, S. and Sacco, E., Multiscale Damage Contact-Friction Model for Periodic Masonry Walls, Comp. Methods Appl. Mechan. Eng., vols. 205-208, pp. 189-203,2012.

  20. Marfia, S. and Sacco, E., Computational Homogenization of Composites Experiencing Plasticity, Cracking and Debonding Phenomena, Comp. Methods Appl. Mechan. Eng., vol. 304, pp. 319-341,2016.

  21. Marfia, S. and Sacco, E., Multiscale Technique for Nonlinear Analysis of Elastoplastic and Viscoplastic Composites, Compos. PartB: Eng., vol. 136, pp. 241-253,2018.

  22. Masiani, R., Rizzi, N., and Trovalusci, P., Masonry as Structured Continuum, Meccanica, vol. 30, no. 6, pp. 673-683,1995.

  23. Masiani, R. and Trovalusci, P., Cauchy and Cosserat Materials as Continuum Models of Brick Masonry, Meccanica, vol. 31, no. 4, pp. 421-432,1996.

  24. Michel, J. and Suquet, P., Nonuniform Transformation Field Analysis, Int. J. Solids Struct., vol. 40, pp. 6937-6955,2003.

  25. Raijmakers, T.M.J. and Vermeltfoort, A.T., Deformation Controlled Tests in Masonry Shear Walls, 1NO-Bouw, Delft, The Nether-lands, Rep. No. B-92-1156,1992.

  26. Reccia, E., Leonetti, L., Trovalusci, P., and Cecchi, A., A Multiscale/Multidomain Model for the Failure Analysis of Masonry Walls: A Validation with a Combined FEM/DEM Approach, Int. J. Multiscale Comput. Eng., vol. 16, no. 4, pp. 325-343,2018.

  27. Sab, K. and Pradel, F., Homogenisation of Periodic Cosserat Media, Int. J. Comp. Appl. Technol., vol. 34, no. l, pp. 60-71,2009.

  28. Sacco, E., A Nonlinear Homogenization Procedure for Periodic Masonry, Eur. J. Mechan.-A/Solids, vol. 28, no. 2, pp. 209-222, 2009.

  29. Salerno, G. and de Felice, G., Continuum Modeling of Periodic Brickwork, Int. J. Solids Struct., vol. 46, no. 5, pp. 1251-1267, 2009.

  30. Spada, A., Giambanco, G., and La Malfa Ribolla, E., A FE Meshless Multiscale Approach for Masonry Materials, Procedia Eng., vol. 109, pp. 364-371,2015.

  31. Trovalusci, P. and Masiani, R., Non-Linear Micropolar and Classical Continua for Anisotropic Discontinuous Materials, Int. J. Solids Struct., vol. 40, no. 5, pp. 1281-1297,2003.

  32. Wei, X. and Hao, H., Numerical Derivation of Homogenized Dynamic Masonry Material Properties with Strain Rate Effects, Int. J. Impact Eng., vol. 36, pp. 522-536,2009.

  33. Zucchini, A. and Lourenco, P.B., A Micro-Mechanical Homogenisation Model for Masonry: Application to Shear Walls, Int. J. Solids Struct., vol. 46, nos. 3-4, pp. 871-886,2009.


Articles with similar content:

A COSSERAT BASED MULTI-SCALE MODEL FOR MASONRY STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 5
Maria Laura De Bellis, Daniela Addessi
NONLINEAR BEHAVIOR OF MASONRY WALLS: FE, DE, AND FE/DE MODELS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 3
Daniele Baraldi, Emilio Meroi, Antonella Cecchi, Emanuele Reccia, Claudia Brito de Carvalho Bello
FROM MICRO- TO MACROMODELS FOR IN-PLANE LOADED MASONRYWALLS: PROPOSITION OF A MULTISCALE APPROACH
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 2
Antonella Cecchi, Alessia Vanin
Blast Analysis of Enclosure Masonry Walls Using Homogenization Approaches
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 2
Gabriele Milani, Paulo B. Lourenco
Effects of Shape and Size of Crystal Grains on the Strengths of Polycrystalline Metals
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Kenjiro Terada, Masayoshi Akiyama, Ikumu Watanabe