Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2013005374
pages 201-225


Julien Yvonnet
Universite Paris-Est, Laboratoire Modelisation et simulation Multi Echelle, 5 Bd Descartes, F-77454 Marne-la-Vallee Cedex 2, France
Eric Monteiro
Université Paris-Est, IFSTTAR, GRETTIA, F-93160, Noisy-le-Grand, France
Qi-Chang He
Southwest Jiaotong University, School of Mechanical Engineering, Chengdu 610031, China; Université Paris-Est, Laboratoire de Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, France

Краткое описание

A nonconcurrent multiscale homogenization method is proposed to compute the response of structures made of heterogeneous hyperelastic materials. The method uses a database describing the effective strain energy density function (potential) in the macroscopic right Cauchy-Green strain tensor space. Each value of the database is computed numerically by means of the finite element method on a representative volume element, the corresponding macroscopic strains being prescribed as boundary conditions. An interpolation scheme is then introduced to provide a continuous representation of the potential, from which the macroscopic stress and elastic tangent tensors can be derived during macroscopic structures calculations. To efficiently compute the interpolations at the macroscopic scale, the full database is reduced by a tensor product approximation. Several extensions are provided to handle issues related to finite strains. The accuracy of the method is tested through different numerical tests involving composites at finite strains with isotropic or anisotropic microstructures. Second-order accuracy is achieved during the macroscopic Newton-Raphson iterations.


  1. Abeyaratne, R. and Triantafyllidis, N., An investigation of localization in a porous elastic material using homogenization theory. DOI: 10.1115/1.3167661

  2. Aboudi, J., Finite strain micromechanical modeling of multiphase composites. DOI: 10.1615/IntJMultCompEng.v6.i5.30

  3. Bouchart, V., Brieu, M., Kondo, D., and Abdelaziz, M. N., Implementation and numerical verification of a non-linear homogenization method applied to hyperelastic composites. DOI: 10.1016/j.commatsci.2008.01.033

  4. Carol, J. D. and Chang, J. J., Analysis of individual differences in multidimensional scaling via an n-way generalization of 'Eckart-Young' decomposition. DOI: 10.1007/BF02310791

  5. Chevalier, L. and Marco, Y., Tools for multiaxial validation of behavior laws chosen for modeling hyper-elasticity of rubber-like materials. DOI: 10.1002/pen.10948

  6. Clément, A., Soize, C., and Yvonnet, J., Computational nonlinear stochastic homogenization using a non-concurrent multiscale approach for hyperelastic heterogenous microstructures analysis. DOI: 10.1002/nme.4293

  7. deBotton, G., Transversally isotropic sequentially laminated composites in finite elasticity. DOI: 10.1016/j.jmps.2005.01.006

  8. deBotton, G., Mariton, I., and Socolsky, E. A., Neo-hookean fiber-reinforced composites in finite elasticity. DOI: 10.1016/j.jmps.2005.10.001

  9. deBotton, G. and Shmuel, G., Mechanics of composites with two families of finitely extensible fiber undergoing large deformations. DOI: 10.1016/j.jmps.2009.05.002

  10. Feyel, F., Multiscale FE<sup>2</sup> elastoviscoplastic analysis of composite structure. DOI: 10.1016/S0927-0256(99)00077-4

  11. Feyel, F., A multilevel finite element method (FE<sup>2</sup>) to describe the response of highly non-linear structures using generalized continua. DOI: 10.1016/S0045-7825(03)00348-7

  12. Feyel, F. and Chaboche, J.-L., FE<sup>2</sup> multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. DOI: 10.1016/S0045-7825(99)00224-8

  13. Gendy, A. S. and Saleeb, A. F., Nonlinear material parameter estimation for characterizing hyperelastic large strain models. DOI: 10.1007/s004660050016

  14. Ghosh, S., Lee, K., and Raghavan, P., A multilevel computational model for multiscale damage analysis in composite and porous media. DOI: 10.1016/S0020-7683(00)00167-0

  15. Harshman, A., Foundations of the parafac procedure: Models and conditions for an explanatory multi-modal factor analysis.

  16. He, Q.-C., Le Quang, H., and Feng, Z. Q., Exact results for the homogenization of elastic fiber-reinforced solids at finite strain. DOI: 10.1007/s10659-006-9049-1

  17. Kiers, H. A. L., Toward a standardized notation and terminology in multiway analysis. DOI: 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I

  18. Kouznetsova, V. G., Geers, M. G. D., and Brekelmans, W. A. M., Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. DOI: 10.1016/j.cma.2003.12.073

  19. Lahellec, N., Mazerolle, F., and Michel, J. C., Second-order estimates for the macroscopic behavior of periodic hyperelastic composites: theory and experimental validation. DOI: 10.1016/S0022-5096(03)00104-2

  20. Lamari, H., Ammar, A., Legrain, P. C. F., Chinesta, F., and Jacquemin, F., Routes for efficient computational homogenization of nonlinear materials using the proper generalized decompositions. DOI: 10.1007/s11831-010-9051-4

  21. Li, S. and Wang, G., Introduction to Micromechanics and Nanomechanics.

  22. Lopez-Pamies, O. and Ponte-Castaneda, P., Second-order estimates for the macroscopic response and loss of ellipticity in porous rubbers at large deformations. DOI: 10.1007/s10659-005-1405-z

  23. Lopez-Pamies, O. and Ponte-Castaneda, P., On the overall behavior, microstructure evolution, and macroscopic stability in rein-forced rubbers at large deformations: I-Theory. DOI: 10.1016/j.jmps.2005.10.006

  24. Mathworks, MATLAB Tensor Toolbox Version 2.4.

  25. Michel, J. C., Lopez-Pamies, P., Ponte-Castaneda, P., and Triantafyllidis, N., Microscopic and macroscopic instabilities in finitely strained porous elastomers. DOI: 10.1016/j.jmps.2006.11.006

  26. Monteiro, E., Yvonnet, J., and He, Q.-C., Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. DOI: 10.1016/j.commatsci.2007.11.001

  27. Ogden, R. W., Extremum principles in non-linear elasticity and their application to composites - I.Theory. DOI: 10.1016/0020-7683(78)90037-9

  28. Ogden, R. W., Saccomandi, G., and Sgura, I., Fitting hyperelastic models to experimental data. DOI: 10.1007/s00466-004-0593-y

  29. Ponte-Castaneda, P. and Tiberio, E., Second-order homogenization method in finite elasticity and applications to black-filled elastomers. DOI: 10.1016/S0022-5096(99)00087-3

  30. Smit, R., Brekelmans, W., and Meijer, H., Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. DOI: 10.1016/S0045-7825(97)00139-4

  31. Takano, N., Zako, M., and Ohnishi, Y., Macro-micro uncoupled homogenization procedure for microscopic nonlinear behavior analysis of composites. DOI: 10.2472/jsms.45.6Appendix_81

  32. Temizer, I. and Wriggers, P., An adaptive method for homogenization in orthotropic nonlinear elasticity. DOI: 10.1016/j.cma.2007.03.017

  33. Temizer, I. and Zohdi, T. I., A numerical method for homogenization in non-linear elasticity. DOI: 10.1007/s00466-006-0097-y

  34. Terada, K. and Kikuchi, N., Nonlinear homogenization method for practical applications.

  35. Terada, K. and Kikuchi, N., A class of general algorithms for multi-scale analysis of heterogeneous media. DOI: 10.1016/S0045-7825(01)00179-7

  36. Tran, A. B., Yvonnet, J., He, Q.-C., Toulemonde, C., and Sanahuja, J., A simple computational homogenization method for structures made of heterogeneous linear viscoelastic materials. DOI: 10.1016/j.cma.2011.06.012

  37. Triantafyllidis, N., Nestorovic, M. D., and Schraad, M. W., Failure surfaces for finitely strained two-phase periodic solids under general in-plane loading. DOI: 10.1115/1.2126695

  38. Triantafyllidis, N. and Schnaidt, W., Comparison of microscopic and macroscopic instabilities in a class of two-dimensional periodic composites. DOI: 10.1016/0022-5096(93)90039-I

  39. Yvonnet, J., Gonzalez, D., and He, Q.-C., Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. DOI: 10.1016/j.cma.2009.03.017

  40. Yvonnet, J. and He, Q.-C., The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. DOI: 10.1016/j.jcp.2006.09.019

  41. Zhang, T. and Golub, G. H., Rank-one approximation to high order tensor. DOI: 10.1137/S0895479899352045