Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002351
pages 515-528

DYNAMICS OF RETICULATED STRUCTURES: EVIDENCE OF ATYPICAL GYRATION MODES

Celine Chesnais
École Nationale des Travaux Publics de l'État, Université de Lyon, DGCB, FRE CNRS 3237, Lyon, France
S. Hans
École Nationale des Travaux Publics de l'État, Université de Lyon, DGCB, FRE CNRS 3237, Lyon, France
Claude Boutin
École Nationale des Travaux Publics de l'État, Université de Lyon, DGCB, FRE CNRS 3237, Lyon, France

Краткое описание

This paper deals with the dynamic behavior of periodic reticulated beams made of symmetric unbraced framed cells. Such archetypical cells can present a high contrast between shear and compression deformabilities that opens the possibility of enriched local kinematics. Through the homogenization method of periodic discrete media associated with a systematic use of scaling, the existence of atypical gyration modes is established theoretically. These latter modes appear when the elastic moment is balanced by the rotation inertia, conversely to "natural" modes where the elastic force is balanced by the translation inertia. A generalized beam modeling including both "natural" and gyration modes is proposed and discussed through a dimensional analysis. The results are confirmed on numerical examples.

ЛИТЕРАТУРА

  1. Boutin, C. and Hans, S., Homogenisation of periodic discrete medium: Application to Dynamics of framed structures. DOI: 10.1016/S0266-352X(03)00005-3

  2. Boutin, C., Hans, S., Ibraim, E., and Roussillon, P., In situ experiments and seismic analysis of existing buildings. Part II. DOI: 10.1002/eqe.503

  3. Boutin, C., Hans, S., and Chesnais, C., Generalized beams and continua. Dynamics of reticulated structures. DOI: 10.1007/978-1-4419-5695-8_14

  4. Caillerie, D., Trompette, P., and Verna, P., Homogenisation of periodic trusses.

  5. Chesnais, C., Dynamique de milieux réticulés non contreventés.

  6. Chesnais, C., Hans, S., and Boutin, C., Wave propagation and diffraction in discrete structures: Effect of anisotropy and internal resonance. DOI: 10.1002/pamm.200700875

  7. Cioranescu, D. and Saint Jean Paulin, J., Homogenization of Reticulated Structures, Applied Mathematical Sciences.

  8. Eringen, A. C., Mechanics of micromorphic continua.

  9. Hans, S. and Boutin, C., Dynamics of discrete framed structures: A unified homogenized description. DOI: 10.2140/jomms.2008.3.1709

  10. Kerr, A. D. and Accorsi, M. L., Generalization of the equations for frame-type structures–a variational approach. DOI: 10.1007/BF01306024

  11. Moreau, G. and Caillerie, D., Continuum modeling of lattice structures in large displacement applications to buckling analysis. DOI: 10.1016/S0045-7949(98)00041-8

  12. Noor, A. K., Continuum modeling for repetitive lattice structures. DOI: 10.1115/1.3151907

  13. Sanchez-Palencia, E., Non-Homogeneous Media and Vibration Theory, Lecture Note in Physics. DOI: 10.1007/3-540-10000-8

  14. Skattum, K. S., Dynamic analysis of coupled shear walls and sandwich beams.

  15. Tollenaere, H. and Caillerie, D., Continuous modeling of lattice structures by homogenization. DOI: 10.1016/S0965-9978(98)00034-9


Articles with similar content:

MULTILEVEL METAL MODELS: FORMULATION FOR LARGE DISPLACEMENT GRADIENTS
Nanoscience and Technology: An International Journal, Vol.8, 2017, issue 2
Alexey I. Shveykin, Peter V. Trusov, Nikita S. Kondratev
EFFECTIVE THERMOELASTIC PROPERTIES OF HETEROGENEOUS THERMOPERISTATIC BAR OF RANDOM STRUCTURE
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 1
Valeriy A. Buryachenko, Chen Wanji, Yang Shengqi
NONLOCAL/COARSE-GRAINING HOMOGENIZATION OF LINEAR ELASTIC MEDIA WITH NON-SEPARATED SCALES USING LEAST-SQUARE POLYNOMIAL FILTERS
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 5
Julien Yvonnet, Guy Bonnet
Multiscale Dislocation Dynamics Plasticity
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 1
S. M. A. Khan, H. M. Zbib, G. Karami, M. Shehadeh
Modeling a Periodic Array of Radiators on a Cylindrical Surface
Telecommunications and Radio Engineering, Vol.60, 2003, issue 7-9
A. Ye. Svezhentsev