Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

A NEW CRACK TIP ENRICHMENT FUNCTION IN THE EXTENDED FINITE ELEMENT METHOD FOR GENERAL INELASTIC MATERIALS

Том 10, Выпуск 4, 2012, pp. 343-360
DOI: 10.1615/IntJMultCompEng.2012002827
Get accessGet access

Краткое описание

Branch functions are commonly used as crack tip enrichments in the extended finite element method (XFEM). Typically, these are four functions derived from linear elasticity and added as additional degrees of freedom. However, for general inelastic material behavior, where the analytical solution and the order of singularity are unknown, Branch functions are typically not used, and only the Heaviside function is employed. This, however, may introduce numerical error, such as inconsistency in the position of the crack tip. In this paper we propose a special construction of a Ramp function as tip enrichment, which may alleviate some of the problems associated with the Heaviside function when applied to general inelastic materials, especially ones with no analytical solutions available. The idea is to linearly ramp down the displacement jump on the opposite sides of the crack to the actual crack tip, which may stop the crack at any point within an element, employing only one enrichment function. Moreover, a material length scale that controls the slope of the ramping is introduced to allow for better flexibility in modeling general materials. Numerical examples for ideal and hardening elastoplastic and elastoviscoplastic materials are given, and the convergence studies show that a better performance is obtained by the proposed method in comparison with the Heaviside function. Nevertheless, when analytical functions, such as the Hutchinson-Rice-Rosengren (HRR) fields, do exist (for very limited material models), they indeed perform better than the proposed Ramp function. However, they also employ more degrees of freedom per node and hence are more expensive.

ЛИТЕРАТУРА
  1. Aragón, A., Duarte, C., and Geubelle, P., Generalized finite element enrichment functions for discontinuous gradient fields. DOI: 10.1002/nme.2772

  2. Bažant, Z. and Kazemi, M., Size effect in fracture of ceramics and its use to determine fracture energy and effective process zone length. DOI: 10.1111/j.1151-2916.1990.tb05233.x

  3. Belytschko, T. and Black, T., Elastic crack growth in finite elements with minimal remeshing. DOI: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

  4. Belytschko, T., Chen, H., Xu, J., and Zi, G., Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. DOI: 10.1002/nme.941

  5. Belytschko, T. and Gracie, R., On xfem applications to dislocations and interfaces. DOI: 10.1016/j.ijplas.2007.03.003

  6. Belytschko, T., Mo&#235;s, N., Usui, S., and Parimi, C., Arbitrary discontinuities in finite elements. DOI: 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M

  7. Belytschko, T., Xiao, S., and Parimi, C., Topology optimization with implicit functions and regularization. DOI: 10.1002/nme.824

  8. Bordas, S. and Moran, B., Enriched finite elements and level sets for damage tolerance assessment of complex structures. DOI: 10.1016/j.engfracmech.2006.01.006

  9. Carka, D. and Landis, C., On the path-dependence of the j-integral near a stationary crack in an elastic-plastic material. DOI: 10.1115/1.4001748

  10. Chessa, J. and Belytschko, T., An extended finite element method for two-phase fluids. DOI: 10.1115/1.1526599

  11. Chessa, J., Smolinski, P., and Belytschko, T., The extended finite element method (xfem) for solidification problems. DOI: 10.1002/nme.386

  12. Daux, C., Mo&#235;s, N., Dolbow, J., Sukumar, N., and Belytschko, T., Arbitrary branched and intersecting cracks with the extended finite element method. DOI: 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L

  13. de Borst, R., Remmers, J., and Needleman, A., Mesh-independent discrete numerical representations of cohesive-zone models. DOI: 10.1016/j.engfracmech.2005.05.007

  14. Dolbow, J., Mo&#235;s, N., and Belytschko, T., Discontinuous enrichment in finite element with a partition of unity method. DOI: 10.1016/S0168-874X(00)00035-4

  15. Duarte, C., Babu&#353;ka, I., and Oden, J., Generalized finite element methods for three-dimensional structural mechanics problems. DOI: 10.1016/S0045-7949(99)00211-4

  16. Dugdale, D., Yielding of steel sheets containing slits. DOI: 10.1016/0022-5096(60)90013-2

  17. Dunne, F. and Petrinic, N., Introduction to Computational Plasticity.

  18. Elguedj, T., Gravouil, A., and Combescure, A., Appropriate extended functions for x-fem simulation of plastic fracture mechanics. DOI: 10.1016/j.cma.2005.02.007

  19. Fries, T., A corrected xfem approximation without problems in blending elements. DOI: 10.1002/nme.2259

  20. Fries, T. and Belytschko, T., The intrinsic xfem: a method for arbitrary discontinuities without additional unknowns. DOI: 10.1002/nme.1761

  21. Gracie, R., Ventura, G., and Belytschko, T., A new fast finite element method for dislocations based on interior discontinuities. DOI: 10.1002/nme.1896

  22. Guest, J., Pr&#233;vost, J., and Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projections functions. DOI: 10.1002/nme.1064

  23. Hansbo, A. and Hansbo, P., A finite element method for the simulation of strong and weak discontinuities in solid mechanics. DOI: 10.1016/j.cma.2003.12.041

  24. Hutchinson, J., Singular behaviour at the end of a tensile crack in a hardening material. DOI: 10.1016/0022-5096(68)90014-8

  25. Huynh, D. and Belytschko, T., The extended finite element method for fracture in composite materials. DOI: 10.1002/nme.2411

  26. Irwin, G., Plastic zone near a crack and fracture toughness.

  27. Menouillard, T., Song, J., Duan, Q., and Belytschko, T., Time dependent crack tip enrichment for dynamic crack propagation. DOI: 10.1007/s10704-009-9405-9

  28. Mo&#235;s, N., Cloirec, M., Cartraud, P., and Remacle, J.-F., A computational approach to handle complex microstructure geometries. DOI: 10.1016/S0045-7825(03)00346-3

  29. Mo&#235;s, N., Dolbow, J., and Belytschko, T., A finite element method for crack growth without remeshing. DOI: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

  30. Nagashima, T. and Miura, N., Elastic-plastic fracture analysis for surface cracks using X-FEM.

  31. Rabinovich, D., Givoli, D., and Vigdergauz, S., XFEM-based crack detection scheme using a genetic algorithm. DOI: 10.1002/nme.1975

  32. Rice, J., A path independent integral and the approximate analysis of strain concentration by notches and cracks. DOI: 10.1115/1.3601206

  33. Rice, J. and Rosengren, G., Plane strain deformation near a crack tip in a power-law hardening material. DOI: 10.1016/0022-5096(68)90013-6

  34. Samaniego, E. and Belytschko, T., Continuum-discontinuum modeling of shear bands. DOI: 10.1002/nme.1256

  35. Shi, J., Lua, J., Waisman, H., Liu, P., Belytschko, T., Sukumar, N., and Liang, Y, X-FEM toolkit for automated crack onset and growth prediction.

  36. Simo, J. and Hughes, T., Comput. Inelasticity.

  37. Song, J., Areias, P., and Belytschko, T., A method for dynamic crack and shear band propagation with phantom nodes. DOI: 10.1002/nme.1652

  38. Strouboulis, T., Babu&#353;ka, I., and Copps, K., The design and analysis of the generalized finite element method. DOI: 10.1016/S0045-7825(99)00072-9

  39. Sukumar, N., Chopp, D., Mo&#235;s, N., and Belytschko, T., Modeling holes and inclusions by level sets in the extended finite element method. DOI: 10.1016/S0045-7825(01)00215-8

  40. Ventura, G., Gracie, R., and Belytschko, T., Fast integration and weight function blending in the extended finite element method. DOI: 10.1002/nme.2387

  41. Waisman, H. and Belytschko, T., Parametric enrichment adaptivity by the extended finite element method. DOI: 10.1002/nme.2137

  42. Waisman, H., Chatzi, E., and Smyth, A., Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms. DOI: 10.1002/nme.2766

  43. Wang, W., Fan, T., and Zhang, L., Analytic study on angular fields of hrr solution. DOI: 10.1007/BF02879051

ЦИТИРОВАНО В
  1. Ladubec Chris, Gracie Robert, Craig James, An extended finite element method model for carbon sequestration , International Journal for Numerical Methods in Engineering, 102, 3-4, 2015. Crossref

  2. Rashetnia R., Mohammadi S., Finite strain fracture analysis using the extended finite element method with new set of enrichment functions, International Journal for Numerical Methods in Engineering, 102, 6, 2015. Crossref

  3. Kang Zuoyi, Bui Tinh Quoc, Saitoh Takahiro, Hirose Sohichi, Quasi-static crack propagation simulation by an enhanced nodal gradient finite element with different enrichments, Theoretical and Applied Fracture Mechanics, 87, 2017. Crossref

  4. Yuan Zifeng, Fish Jacob, Are the cohesive zone models necessary for delamination analysis?, Computer Methods in Applied Mechanics and Engineering, 310, 2016. Crossref

  5. Nguyen Nha Thanh, Bui Tinh Quoc, Truong Thien Tich, Transient dynamic fracture analysis by an extended meshfree method with different crack-tip enrichments, Meccanica, 52, 10, 2017. Crossref

  6. Zhang Ziyu, Jiang Wen, Dolbow John E., Spencer Benjamin W., A modified moment-fitted integration scheme for X-FEM applications with history-dependent material data, Computational Mechanics, 62, 2, 2018. Crossref

  7. Hou Junling, Zuo Hong, Li Qun, Jiang Rong, Zhao Liguo, M-integral analysis for cracks in a viscoplastic material with extended finite element method, Engineering Fracture Mechanics, 200, 2018. Crossref

  8. Jiang Y., Dong J., Nie D.F., Zhang X.Q., XFEM with partial Heaviside function enrichment for fracture analysis, Engineering Fracture Mechanics, 241, 2021. Crossref

  9. Ebrahimi S. Hamed, Rabczuk Timon, Anitescu Cosmin, Plastic crack-tip fields under thermoplastic loads, European Journal of Mechanics - A/Solids, 97, 2023. Crossref

  10. Xing Chen, Zhou Chuwei, Sun Yulin, A singular crack tip element based on sub-partition and XFEM for modeling crack growth in plates and shells, Finite Elements in Analysis and Design, 215, 2023. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain