Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 18, 2020 Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2012003264
pages 375-390

A MULTISCALE METHOD FOR GEOPHYSICAL FLOW EVENTS

James E. Hilton
CSIRO Mathematics, Informatics and Statistics, Clayton, Victoria 3169, Australia
Paul W. Cleary
CSIRO Mathematics, Informatics and Statistics, Clayton, Victoria 3169, Australia

Краткое описание

Large-scale prediction of events such as coastal inundation, flooding, and dam collapse is becoming increasingly necessary from both a geophysical and geoengineering standpoint. Current computational models can only capture large-scale flow events and are unable to resolve three-dimensional mesoscale local flow features. We present a multiscale coupled fluid method, with large-scale flow over the full domain coupled with a smaller-scale model to more accurately resolve local flow features in regions of interest. The macroscale model uses a finite volume method based on the shallow water (SW) formulation. This is coupled to a mesoscale smoothed particle hydrodynamics (SPH) method for solving the three-dimensional Navier-Stokes equations for the fluid flow. We show the viability of this multiscale method for predicting both large-scale and smaller-scale flow effects in geophysical flow applications.

ЛИТЕРАТУРА

  1. Anastasiou, K. and Chan, C. T., Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. DOI: 10.1002/(SICI)1097-0363(19970615)24:11<1225::AID-FLD540>3.0.CO;2-D

  2. Begnudelli, L. and Sanders, B. F., Unstructured grid finite volume algorithm for shallow-water flow and scalar transport with wetting and drying. DOI: 10.1061/(ASCE)0733-9429(2006)132:4(371)

  3. Begnudelli, L. and Sanders, B. F., Simulation of the St. Francis dam-break flood. DOI: 10.1061/(ASCE)0733-9399(2007)133:11(1200)

  4. Begnudelli, L., Sanders, B. F., and Bradford, S. F., Adaptive Godunov-based model for flood simulation. DOI: 10.1061/(ASCE)0733-9429(2008)134:6(714)

  5. Bradford, S. F. and Sanders, B. F., Finite-volume model for shallow-water flooding of arbitrary topography. DOI: 10.1061/(ASCE)0733-9429(2002)128:3(289)

  6. Chanson, H., The Hydraulics of Open Channel Flow: An Introduction.

  7. Chow, V. T. and Ben-Zvi, A., Hydrodynamic modeling of two-dimensional watershed flow.

  8. Cleary, P. W. and Prakash, M., Discrete-element modelling and smoothed particle hydrodynamics: Potential in the environmental sciences. DOI: 10.1098/rsta.2004.1428

  9. Cleary, P. W., Prakash, M., Ha, J., Stokes, N., and Scott, C., Smooth particle hydrodynamics: Status and future potential. DOI: 10.1504/PCFD.2007.013000

  10. Cleary, P. W., Rothauge, K., and Prakash, M., Combining photogrammetric digital terrain and surface textures with large scale particle based computational models to predict three dimensional dam collapse and landslide events. DOI: 10.1080/19479832.2010.491801

  11. Cummins, S. J., Silvester, T. B., and Cleary, P. W., Three-dimensional wave impact on a rigid structure using smoothed particle hydrodynamics. DOI: 10.1002/fld.2539

  12. Gingold, R. A. and Monaghan, J. J., Smooth particle hydrodynamics: Theory and application to non-spherical stars.

  13. G&#243;mez-Gesteira, M. and Dalrymple, R. A., Using a three dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. DOI: 10.1061/(ASCE)0733-950X(2004)130:2(63)

  14. Iskandarani, M., Haidvogel, D. B., Levin, J. C., Curchitser, E., and Edwards, C. A., Multiscale geophysical modeling using the spectral element method. DOI: 10.1109/MCISE.2002.1032428

  15. Juanes, R. and Patzek, T. W., Multiscale-stabilized solutions to one-dimensional systems of conservation laws. DOI: 10.1016/j.cma.2004.07.026

  16. Kurganov, A. and Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convectiondiffusion equations. DOI: 10.1006/jcph.2000.6459

  17. Lamby, P., Muller, S., and Stiriba, Y., Solution of shallow water equations using fully adaptive multiscale schemes. DOI: 10.1002/fld.1004

  18. Laura, R. A. and Wang, J. D., Two-dimensional flood routing on steep slopes. DOI: 10.1061/(ASCE)0733-9429(1984)110:8(1121)

  19. Le Ma&#523;tre, O., Levin, J., Iskandarani, M., and Knio, O. M., A multiscale pressure splitting of the shallow-water equations. DOI: 10.1006/jcph.2001.6647

  20. Leopardi, A., Oliveri, E., and Greco, M., Two-dimensional modeling of floods to map risk-prone areas. DOI: 10.1061/(ASCE)0733-9496(2002)128:3(168)

  21. Monaghan, J. J., Simulating free surface flows with SPH. DOI: 10.1006/jcph.1994.1034

  22. Monaghan, J. J., Smoothed particle hydrodynamics. DOI: 10.1088/0034-4885/68/8/R01

  23. Nessyahu, H. and Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws. DOI: 10.1016/0021-9991(90)90260-8

  24. Prakash, M., Rothauge, K., and Cleary, P. W., Dam-break flood modelling of the St. Francis Dam using SPH.

  25. Raad, P.E. and Bidoae, R., The three-dimensional Eulerian-Lagrangian marker and micro-cell method for the simulation of free surface flows. DOI: 10.1016/j.jcp.2004.09.013

  26. Wang, Z. and Shen, H. T., Lagrangian simulation of one-dimensional dam-break flow. DOI: 10.1061/(ASCE)0733-9429(1999)125:11(1217)

  27. Weare, T. J., Finite element or finite difference methods for the two-dimensional shallow water equations?. DOI: 10.1016/0045-7825(76)90068-2

  28. Zhao, D. H., Shen, H. W., Tabious, G. Q., Lai, J. S., and Tan, W. Y., Finite volume two dimensional unsteady flow model for river basins. DOI: 10.1061/(ASCE)0733-9429(1994)120:7(863)


Articles with similar content:

EFFECT OF DEM UNCERTAINTY ON GEOPHYSICAL MASS FLOW VIA IDENTIFICATION OF STRONGLY COUPLED SUBSYSTEM
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 6
Abani Patra, Puneet Singla, Rahul Rai, Arpan Mukherjee, Tarunraj Singh
MESHLESS SIMULATION APPROACH FOR WATER MANAGEMENT USING SMOOTHED PARTICLE HYDRODYNAMICS
4th Thermal and Fluids Engineering Conference, Vol.5, 2019, issue
Markus Ihmsen, David Greif
A MULTI-GPU BASED ACCURATE ALGORITHM FOR SIMULATIONS OF GAS-LIQUID FLOWS
First Thermal and Fluids Engineering Summer Conference, Vol.4, 2015, issue
Kai Jin, Purushotam Kumar, Surya P. Vanka
RANS/LES COUPLING USING A FORCING TERM APPROACH
TSFP DIGITAL LIBRARY ONLINE, Vol.4, 2005, issue
Frederic Ducros, Pierre Sagaut, Younes Benarafa
LES OF COMLEX TURBULENT FLOWS WITH HIGH ORDER ACCURACY FINITE VOLUME METHOD
TSFP DIGITAL LIBRARY ONLINE, Vol.5, 2007, issue
Guixiang Cui, Lan Xu, Zhaoshun Zhang, Rui-Feng Shi