Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2018022854
pages 101-119

VARIATIONAL INEQUALITIES FOR HETEROGENEOUS MICROSTRUCTURES BASED ON COUPLE-STRESS THEORY

Sourish Chakravarty
Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
Sonjoy Das
Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
Ali R. Hadjesfandiari
Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
Gary F. Dargush
Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA

Краткое описание

In this work, we view mesoscopic material volume elements consisting of heterogeneous microstructures as couple-stress continua to account for underlying length-scale dependence. We use a recently established self-consistent version of couple-stress theory that results in a skew-symmetric couple-stress tensor, along with the energy-conjugate mean-curvature tensor. Using this new theoretical framework, we establish a generalized Hill energetic equivalence relationship that leads to a homogeneous material representation at the macroscale point associated with the mesoscopic volume element. We identify the necessary and sufficiency conditions that enable the extension of the couple-stress continuum framework and its application to incorporate the mesoscale features into the macroscale continuum description. We establish the concept of a micromechanically consistent macroscopic elastic constitutive tensor within this paradigm and also propose special kinematically and statically uniform boundary conditions, analogous to previous work in classical elasticity. This then leads to determination of two suitable matrices that bound the matrix representation of the macroscopic elastic constitutive tensor in the positive definite sense. Similar bounds based on classical mechanics are found to be critical quantities in several aspects of multiscale material modeling. We envisage that the theoretical work presented here will be useful in analyzing coarse-grained heterogeneous microstructures with inherent characteristic length-scale features contained within the mesoscopic material volume element.


Articles with similar content:

Nonlinear viscoelastic analysis of statistically homogeneous random composites
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Michal Sejnoha, R. Valenta, Jan Zeman
Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri
The Stochastic Interface Defects in Composite Materials Subjected to Aging Processes
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 4
Marcin Kaminski
PHYSICAL MODEL OF THE BEHAVIOR OF POLYMER NANOSTRUCTURED COMPOSITES IN NANOINDENTATION
Nanoscience and Technology: An International Journal, Vol.1, 2010, issue 4
Yu. V. Kornev, O. V. Boiko, G. V. Kozlov, Yuri G. Yanovsky, Yulia N. Karnet
MULTISCALE PARAMETER IDENTIFICATION
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 4
Paul Steinmann, Julia Mergheim, Ulrike Schmidt