Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

REITERATED HOMOGENIZATION APPLIED TO NANOFLUIDS WITH AN INTERFACIAL THERMAL RESISTANCE

Том 18, Выпуск 3, 2020, pp. 361-384
DOI: 10.1615/IntJMultCompEng.2020031351
Get accessGet access

Краткое описание

Heterogeneous media with several spatial scales are often found in heat transfer applications. For instance, two-phase nanofluids made of nanoparticles immersed in a fluid containing both individual particles and clusters, which exhibit at least three structural scales, have shown improved thermal conductivity over the individual constituents. In this work, a problem for the Fourier heat equation with periodic and rapidly oscillating coefficients is studied via a reiterated homogenization method. The constituent phases are assumed to be in imperfect thermal contact, so there is a thermal barrier at the interfaces. The formal procedure to derive the homogenized problem, local problems, and effective coefficients is described for a general three-dimensional problem. The influence of volume fractions, phase conductivities, and interfacial thermal resistances on the effective behavior is exemplified for the case of laminated composites. An application of a simple model for the study of nanofluids is explained. Improvement of the effective conductivity and its dependence on the interfacial resistance is analyzed.

ЛИТЕРАТУРА
  1. Allaire, G. and Briane, M., Multiscale Convergence and Reiterated Homogenisation, Proc. Royal Soc. Edinburgh, vol. 126A, pp. 297-142,1996.

  2. Alvarez-Borges, F.E., Bravo-Castillero, J., Cruz, M.E., Guinovart-Diaz, R., Perez-Fernandez, L.D., Rodriguez-Ramos, R., and Sabina, F.J., Reiterated Homogenization of a Laminate with Imperfect Contact: Gain-Enhancement of Effective Properties, Appl. Math. Mech, vol. 39, no. 8, pp. 1119-1146,2018.

  3. Angayarkanni, S.A. and Philip, J., Review on Thermal Properties of Nanofluids: Recent Developments, Adv. ColloidInterf. Sci., vol. 225, pp. 146-176,2015.

  4. Auriault, J.L., Effective Macroscopic Description for Heat Conduction in Periodic Composites, Int. J. Heat Mass Transf., vol. 26, no. 6, pp. 861-869,1983.

  5. Auriault, J.L. and Ene, H.I., Macroscopic Modelling of Heat Transfer in Composites with Interfacial Thermal Barrier, Int. J. Heat Mass Transf., vol. 37, no. 18, pp. 2885-2892,1994.

  6. Bakhvalov, N.S., On the Convergence of a Relaxation Method with Natural Constraints on the Elliptic Operator, USSR Comput. Math. Math. Phys, vol. 6, no. 5, pp. 101-135,1966.

  7. Bakhvalov, N.S. and Panasenko, G.P., Homogenisation: Averaging Processes in Periodic Media, Dordrecht, Netherlands: Kluwer Academic Publishers, 1989.

  8. Bensoussan, A., Lions, J.L., and Papanicolau, G., Asymptotic Analysis for Periodic Structures, Studies in Mathematics and Its Applications Series, Amsterdam, Netherlands: North-Holland Publishing Company, 1978.

  9. Bravo-Castillero, J., Rodriguez-Ramos, R., Mechkour, H., Otero, J.A., and Sabina, F.J., Homogenization of Magneto-Electro- Elastic Multilaminated Materials, Q. J. Mech. Appl. Math., vol. 61, no. 3, pp. 311-332,2008.

  10. Bystrom, J., Some Mathematical and Engineering Aspects of the Homogenization Theory, PhD, Lulea University of Technology, 2002.

  11. Bystrom, J., Helsing, J., and Meidell, A., Some Computational Aspects of Iterated Structures, Composites, Part B, vol. 32, no. 6, pp. 485-490,2001.

  12. Cavallari, M.R., Zanchin, V.R., Valle, M.A., Izquierdo, J.E.E., Rodriguez, E.M., Rodriguez, E.F.G., Pereira-da Silva, M.A., and Fonseca, F.J., On the Performance Degradation of Poly(3-hexylthiophene) Field-Effect Transistors, IEEE Trans. Device Mater. Reliab, vol. 15, no. 3, pp. 342-351,2015.

  13. Cioranescu, D. and Donato, P., An Introduction to Homogenization, Lecture Series in Mathematics and Its Applications, Oxford, UK: University Press, 1999.

  14. Coyle, R. and Switzer, J., Electrochemical Synthesis of Ceramic Films and Powders, US Patent 4,882,014, filed Feb. 24,1988, and issued Nov. 21,1989, from https://www.google.com/patents/US4882014.

  15. Donato, P. and Monsurro, S., Homogenization of Two Heat Conductors with an Interfacial Contact Resistance, Anal. Appl., vol. 2, no. 3, pp. 247-273,2004.

  16. Dong, H., Cui, J., Nie, Y., Yang, Z., and Wang, Z., High-Order Three-Scale Computational Method for Heat Conduction Problems of Axisymmetric Composite Structures with Multiple Spatial Scales, AdK Eng. Software, vol. 121, pp. 1-12,2018.

  17. Dong, H., Zheng, X., Cui, J., Nie, Y., Yang, Z., and Yang, Z., High-Order Three-Scale Computational Method for Dynamic Thermo-Mechanical Problems of Composite Structures with Multiple Spatial Scales, Int. J. Solids Struct., vol. 169, pp. 95-121, 2019.

  18. Eapen, J., Rusconi, R., Piazza, R., and Yip, S., The Classical Nature of Thermal Conduction in Nanofluids, J. Heat Transf., vol. 132, no. 10, p. 102402,2010.

  19. Evans, W., Fish, J., and Keblinski, P., Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity, Appl. Phys. Lett., vol. 88, p. 093116,2006.

  20. Evans, W., Prasher, R., Fish, J., Meakin, P., Phelan, P., and Keblinski, P., Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids, Int. J. Heat Mass Transf., vol. 51, pp. 1431-1438,2008.

  21. Ganvir, R., Walke, P., and Kriplani, V., Heat Transfer Characteristics in Nanofluid - A Review, Renewable Sustainable Energy Rev, vol. 75, pp. 451-460,2017.

  22. Gao, J.W., Zheng, R.T., Ohtani, H., Zhu, D.S., and Chen, G., Experimental Investigation of Heat Conduction Mechanisms in Nanofluids. Clue on Clustering, Nano Lett., vol. 9, no. 12, pp. 4128-4132,2009.

  23. Greco, A., Numerical Simulation and Mathematical Modeling of 2D Multi-Scale Diffusion in Lamellar Nanocomposite, Comput. Mater. Sci., vol. 90, pp. 203-209,2014.

  24. Iglesias-Rodriguez, E., Homogeneizacion Reiterada en Medios Conductivos con Contacto Perfecto, Master's, Facultad de Matematica y Computation, Universidad de La Habana, 2017.

  25. Iglesias-Rodriguez, E., Cruz, M.E., and Bravo-Castillero, J., Reiterated Homogenization Applied to Heat Conduction in Hetero-geneous Media with Multiple Spatial Scales and Perfect Thermal Contact between the Phases, J. Braz. Soc. Mech. Sci. Eng., vol. 38, pp. 1333-1343,2016a.

  26. Iglesias-Rodriguez, E., Cruz, M.E., Bravo-Castillero, J., Guinovart-Diaz, R., Rodriguez-Ramos, R., and Perez-Fernandez, L.D., Formulation of the Heat Conduction Equation for Heterogeneous Media with Multiple Spatial Scales Using Reiterated Homog-enization, Engenharia Termica (ThermalEngineering), vol. 15, no. 1, pp. 96-102,2016b.

  27. Jie, X., Bo-Ming, Y., andMei-Juan, Y., Effect of Clusters on Thermal Conductivity in Nanofluids, Chin. Phys. Lett., vol. 23, no. 10, pp. 2819-2822,2006.

  28. Jin, J.S. and Lee, J.S., Effects of Aggregated Sphere Distribution and Percolation on Thermal Conduction of Nanofluids, J. Thermophys. Heat Transf., vol. 27, no. 1, pp. 173-178,2013.

  29. Kakac, S. andPramuanjaroenkij, A., Review of Convective Heat Transfer Enhancement with Nanofluids, Int. J. Heat Mass Transf., vol. 52, nos. 13-14, pp. 3187-3196,2009.

  30. Khanafer, K. and Vafai, K., A Review on the Applications of Nanofluids in Solar Energy Field, Renewable Energy, vol. 123, pp. 398-406,2018.

  31. Kumar, P.M., Kumar, J., Tamilarasan, R., Sendhilnathan, S., and Suresh, S., Review on Nanofluids Theoretical Thermal Conductivity Models, Eng. J., vol. 19, no. 1, pp. 67-83,2015.

  32. Lienhard IV, J.H. and Lienhard V, J.H., A Heat Transfer Textbook, 3rd ed., Cambridge, MA: Phlogiston Press, 2005.

  33. Lopez-Ruiz, G., Cotas Variacionales para los Coeficientes Efectivos de la Ecuacion del Calor en Medios Fibrosos con Contacto Imperfecto, Master's, Facultad de Matematica y Computation, Universidad de La Habana, 2014.

  34. Lopez-Ruiz, G., Bravo-Castillero, J., Brenner, R., Cruz, M.E., Guinovart-Diaz, R., Perez-Fernandez, L.D., and Rodriguez-Ramos, R., Improved Variational Bounds for Conductive Periodic Composites with 3D Microstructures and Nonuniform Thermal Resistance, Z. Angew. Math. Phys, vol. 66, pp. 2881-2898,2015.

  35. Markov, K.Z. and Preziosi, L., Eds., Elementary Micromechanics of Heterogeneous Media, in Heterogeneous Media, Boston: Birkhauser, pp. 1-162,1999.

  36. Matt, C.F. and Cruz, M.E., Effective Thermal Conductivity of Composite Materials with 3D Microstructures and Interfacial Thermal, Numer. Heat Transf., Part A: Appl., vol. 53, no. 6, pp. 577-604,2008.

  37. Mattos, L.P., Cruz, M.E., and Bravo-Castillero, J., Finite Element Computation of the Effective Thermal Conductivity of Two-Dimensional Multi-Scale Heterogeneous Media, Eng. Computat., vol. 35, no. 5, pp. 2107-2123,2018.

  38. Mechkour, H., Homogeneisation et Simulation Numerique de Structures Piezoelectriques Perforees et Laminees, PhD, Mathematiques Appliquees, Universite de Marne-La-Vallee, 2004.

  39. Mortazavi, B., Benzerara, O., Meyer, H., Bardon, J., and Ahzi, S., Combined Molecular Dynamics-Finite Element Multiscale Modeling of Thermal Conduction in Graphene Epoxy Nanocomposites, Carbon, vol. 60, pp. 356-365,2013.

  40. Nascimento, E.S., Cruz, M.E., and Bravo-Castillero, J., Calculation of the Effective Thermal Conductivity of Multiscale Ordered Arrays based on Reiterated Homogenization Theory and Analytical Formulae, Int. J. Eng. Sci, vol. 119, pp. 205-216,2017.

  41. Panasenko, G.P., Homogenization for Periodic Media: From Microscale to Macroscale, Phys. Atomic Nuclei, vol. 71, no. 4, pp. 681-694,2008.

  42. Prasher, R., Phelan, P.E., and Bhattacharya, P., Effect of Aggregation Kinetics on the Thermal Conductivity ofNanoscale Colloidal Solutions (Nanofluid), Nano Lett., vol. 6, no. 7, pp. 1529-1534,2006.

  43. Putnam, S.A., Cahill, D.G., Braun, P.V., Ge, Z., and Shimmin, R.G., Thermal Conductivity of Nanoparticle Suspensions, J. Appl. Phys, vol. 99, no. 8, p. 084308,2006.

  44. Raja, M., Vijayan, R., Dineshkumar, P., and Venkatesan, M., Review onNanofluids Characterization, Heat Transfer Characteristics and Applications, Renewable Sustainable Energy Rev., vol. 64, pp. 163-173,2016.

  45. Rassaei, L., Vigil, E., French, R.W., Mahon, M.F., Compton, R.G., and Marken, F., Effects of Microwave Radiation on Electrode-position Processes at Tin-Doped Indium Oxide (Ito) Electrodes, Electrochim. Acta, vol. 54, no. 26, pp. 6680-6685,2009.

  46. Rocha, R.P.A. and Cruz, M.E., Computation of the Effective Conductivity of Unidirectional Fibrous Composites with an Interfacial Thermal Resistance, Numer. Heat Transf, Part A: Appl., vol. 39, no. 2, pp. 179-203,2001.

  47. Saidur, R., Leong, K., and Mohammad, H., A Review on Applications and Challenges of Nanofluids, Renewable Sustainable Energy Rev, vol. 15, no. 3, pp. 1646-1668,2011.

  48. Shin, H., Yang, S., Chang, S., Yu, S., and Cho, M., Multiscale Homogenization Modeling for Thermal Transport Properties of Polymer Nanocomposites withKapitza Thermal Resistance, Polymer, vol. 54, pp. 1543-1554,2013.

  49. Sidik, N.A.C., Mohammed, H., Alawi, O.A., and Samion, S., A Review on Preparation Methods and Challenges of Nanofluids, Int. Commun. Heat Mass Transf, vol. 54, pp. 115-125,2014.

  50. Sixto-Camacho, L.M., Bravo-Castillero, J., Brenner, R., Guinovart-Diaz, R., Mechkour, H., Rodriguez-Ramos, R., and Sabina, F.J., Asymptotic Homogenization of Periodic Thermo-Magneto-Electro-Elastic Heterogeneous Media, Comput. Math. Appl, vol. 66, no. 10, pp. 2056-2074,2013.

  51. Vatani, A., Woodfield, P.L., and Dao, D.V., A Survey of Practical Equations for Prediction of Effective Thermal Conductivity of Spherical-Particle Nanofluids, J. Mol. Liq., vol. 211, pp. 712-733,2015.

  52. Voyiadjis, G.Z. and Kattan, P.I., Mechanics of Composite Materials with MATLAB, Berlin: Springer-Verlag, 2005.

  53. Wang, J.J., Zheng, R.T., Gao, J.W., and Chen, G., Heat Conduction Mechanisms in Nanofluids and Suspensions, Nano Today, vol. 7, no. 2, pp. 124-136,2012.

  54. Wang, X.Q. and Mujumdar, A.S., A Review on Nanofluids - Part I: Theoretical and Numerical Investigations, Braz. J. Chem. Eng., vol. 25, no. 4, pp. 613-630,2008a.

  55. Wang, X.Q. and Mujumdar, A.S., A Review on Nanofluids - Part II: Experiments and Applications, Braz. J. Chem. Eng., vol. 25, no. 4, pp. 631-648,2008b.

  56. Yang, Z., Sun, Y., Cui, J., Yang, Z., and Guan, T., A Three-Scale Homogenization Algorithm for Coupled Conduction-Radiation Problems in Porous Materials with Multiple Configurations, Int. J. Heat Mass Transf., vol. 125, pp. 1196-1211,2018.

  57. Yang, Z., Zhang, Y., Dong, H., Cui, J., Guan, X., and Yang, Z., High-Order Three-Scale Method for Mechanical Behavior Analysis of Composite Structures with Multiple Periodic Configurations, Compos. Sci. Technol., vol. 152, pp. 198 - 210,2017.

  58. Zhang, X., Gu, H., and Fujii, M., Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids, Int. J. Thermophys., vol. 27, no. 2, pp. 569-580,2006.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain