Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v4.i4.70
pages 501-520

A Stochastic Nonlocal Model for Materials with Multiscale Behavior

Jianxu Shi
ABAQUS, Inc., Rising Sun Mills, 166 Valley Street, Providence, RI02909-2499
Roger Ghanem
Department of Aerospace and Mechanical Engineering, University of Southern California, 210 KAP Hall, Los Angeles, California 90089, USA

Краткое описание

Integral-type nonlocal mechanics is employed to model the macroscale behavior of multiscale materials, with the associated nonlocal kernel representing the interactions between mesoscale features. The nonlocal model is enhanced by explicitly considering the spatial variability of subscale features as stochastic contributions resulting in a stochastic characterization of the kernel. By appropriately representing the boundary conditions, the nonlocal boundary value problem (BVP) of the macroscale behavior is transformed into a system of equations consisting of a classical BVP together with two Fredholm integral equations. The associated integration kernels can be calibrated using either experimental measurements or micromechanical analysis. An efficient and computationally expedient representation of a resulting stochastic kernel is achieved through its polynomial chaos decomposition. The coefficients in this decomposition are evaluated from statistical samples of the disturbance field associated with a random distribution of microcracks. The new model is shown to be capable of predicting nonlocal features, such as the size effect and boundary effect, of the behavior of materials with random microstructures.


Articles with similar content:

A NEW INVERSE METHOD FOR THE UNCERTAINTY QUANTIFICATION OF SPATIALLY VARYING RANDOM MATERIAL PROPERTIES
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 6
Gun Jin Yun, Shen Shang
MATERIAL RESPONSE AT MICRO-, MULTI-, AND MACROSCALES
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 3
Mircea Grigoriu
VARIATIONAL INEQUALITIES FOR HETEROGENEOUS MICROSTRUCTURES BASED ON COUPLE-STRESS THEORY
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 2
Sonjoy Das, Gary F. Dargush, Ali R. Hadjesfandiari, Sourish Chakravarty
MULTISCALE HOMOGENIZATION SCHEMES FOR THE CONSTRUCTION OF SECOND-ORDER GRADE ANISOTROPIC CONTINUUM MEDIA OF ARCHITECTURED MATERIALS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 1
Jean-François Ganghoffer, F. Dos Reis, Yosra Rahali
PERTURBATION-BASED STOCHASTIC MICROSCOPIC STRESS ANALYSIS OF A PARTICLE-REINFORCED COMPOSITE MATERIAL VIA STOCHASTIC HOMOGENIZATION ANALYSIS CONSIDERING UNCERTAINTY IN MATERIAL PROPERTIES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
F. Ashida, Sei-ichiro Sakata, K. Enya