Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 18, 2020 Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2019028876
pages 65-81

ENHANCEMENTS TO THE INHERENT STRAIN METHOD FOR ADDITIVE MANUFACTURING ANALYSIS

Qiukai Lu
Altair Engineering, Austin, TX, 78757
Erwan Beauchesne
Altair Engineering, Austin, TX, 78757
Tadeusz Liszka
Altair Engineering, Austin, TX, 78757

Краткое описание

Analysis of stress and deformation of parts produced during additive manufacturing (AM) process is critical to predict potential defects during the process and quality of parts produced. However, the complex physics of the process and vastly different scales of the analysis require long computations on powerful computers (including exa-scale computing), which makes accurate analysis impractical. Simplified approach in published literature typically utilizes extrapolation of inherent strain theory developed for analysis of welding processes, however, results are often unsatisfactory as the AM process and geometry of produced parts is much more complex. Here we present generalization of the inherent strain into a two-level method, where the fine model (so-called mesoscale analysis) provides a whole family of inherent strain models, and the coarse model (macroscale) uses different values for inherent strain varying with location, surrounding geometry, and parameters of AM process.

Ключевые слова: additive manufacturing, inherent strain method

ЛИТЕРАТУРА

  1. Alvarez, P., Ecenarro, J., Setien, I., San Sebastian, M., Echeverria, A., and Eciolaza, L., Computationally Efficient Distortion Prediction in Powder Bed Fusion Additive Manufacturing, Int. J. Eng. Res. Sci., vol. 2, pp. 39–46, 2016.

  2. ANSYS, Additive Manufacturing Simulation, accessed Sept. 20, 2018, from https://www.ansys.com/products/structures/additivemanufacturing, 2017.

  3. Argyris, J.H., Szimmat, J., and Willam, K.J., Computational Aspects of Welding Stress Analysis, Comput. Methods Appl. Mech. Eng., vol. 33, pp. 635–665, 1982.

  4. AUTODESK, Autodesk–Fusion–360, accessed Sept. 20, 2018, from https://www.autodesk.com/products/fusion-360, 2017.

  5. Bass, J. and Liszka, T., HP-Adaptive Analysis of Thermal Stresses during Deposition Process, Altair Engineering, Project Proposal for Motorola Company, 1999.

  6. CIMNE and TUM, Kratos Multi–Physics, International Center for Numerical Methods in Engineering, Barcelona, Spain and TUM Chair of Structural Analysis Technical University of Munich, Germany, accessed Sept. 20, 2018, from http://www.cimne.com/kratos/, 2018.

  7. CORDIS, Horizon 2020, Project 723826: Maestro, European Commission, Community Research and Development Information Service, accessed Sept. 20, 2018, from https://cordis.europa.eu/project/rcn/205398 en.html, 2016.

  8. Denlinger, E., Irwin, J., and Michaleris, P., Thermomechanical Modeling of Additive Manufacturing Large Parts, J. Manufacturing Sci. Eng., vol. 136, p. 061007, 2014.

  9. Ferencz, R., Hodge, N., Ganeriwala, R., and Vignes, R., Experience and Challenges with Part-Scale Modeling of Select Laser Melting Additive Manufacturing, 14th U.S. National Congress on Computational Mechanics, 2017.

  10. Friedman, E., Thermomechanical Analysis of the Welding Process using the Finite Element Method, ASME J. Pressure Vessel Technol., vol. 97, pp. 206–213, 1975.

  11. Goldak, J., Chakravarti, A., and Bibby, M., A New Finite Element Model for Welding Heat Sources, Metallurg. Trans. B, vol. 15, no. 2, pp. 299–305, 1984.

  12. Hill, R., Elastic Properties of Reinforced Solids: Some Theoretical Principles, J. Mech. Phys. Solids, vol. 11, pp. 357–372, 1963.

  13. Hodge, N. and Ferencz, R., Part-Level Finite Element Simulation of Selective Laser Melting, 14th U.S. National Congress on Computational Mechanics, 2017.

  14. IPC, Innovation Plastirgie Composites Center, from https://ct-ipc.com, 2018.

  15. John, T., Goals of the Exascale Additive Manufacturing Project (Exam), 14th U.S. National Congress on Computational Mechanics, 2017.

  16. Kale, S., Saharan, A., Koric, S., and Ostoja-Starzewski, M., Scaling and Bounds in Thermal Conductivity of Planar Gaussian Correlated Microstructures, J. Appl. Phys., vol. 117, p. 104301, 2015.

  17. Keller, N. and Ploshikhin, V., New Method for Fast Predictions of Residual Stress and Distortion of am Parts, Solid Freeform Fabrication Symposium, Austin, TX, pp. 1229–1237, 2014.

  18. Kennon, S.R., Berry, C., Liszka, T., and Gonik, S., Phlex: An H-P Adaptive Finite Element Kernel for High Performance Solution of Problems in Computational Mechanics, 3rd U.S. Natl. Congress on Comp. Mech., Dallas, TX, USA, 1995.

  19. Liang, X., Chen, Q., Cheng, L., Yang, Q., and To, A., A Modified Inherent Strain Method for Fast Prediction of Residual Deformation in Additive Manufacturing of Metal Parts, Proc. 28th Annual International Solid Freeform Fabrication Symposium, Austin, TX, 2017.

  20. Lu, Q., Beauchesne, E., Liszka, T., and Reddy, M., Development of Commercial Finite Element Software using Kratos Multiphysics Framework, 13th World Congress on Computational Mechanics, New York City, USA, 2018.

  21. Lundback, A., Modelling and Simulation of Welding and Metal Deposition, PhD Thesis, Lulea University of Technology, 2010.

  22. Lundback, A., Malmelov, A., Lindwall, J., and Lindgren, L.-E., Simulation of Additive Manufacturing and Techniques to Reduce the Computational Time, 14th U.S. National Congress on Computational Mechanics, 2017.

  23. Michaleris, P., Modeling Metal Deposition in Heat Transfer Analysis of Additive Manufacturing Processes, Finite Elements Anal. Design, vol. 86, pp. 51–60, 2014.

  24. Paley, Z. and Hibbert, P.D., Computation of Temperatures in Actual Weld Designs, Welding J. Res. Suppl., vol. 54, pp. 385s–392s, 1975.

  25. Pavelic, V., Tanbakuchi, R., Uyehara, O.A., and Myers, P.S., Experimental and Computed Temperature Histories in Gas Tungsten Arc Welding of Thin Plates, Welding J. Res. Suppl., vol. 48, pp. 295s–305s, 1969.

  26. PhlexSolids, PHLEXSolids User’s Manual, Troy, MI: Altair Engineering Inc., 2001.

  27. Shapiro, A., Additive Manufacturing for Aerospace Flight Applications, J. Aerospace Rockets, pp. 952–959, 2016.

  28. Ueda, Y., Murakawa, H., and Ma, N., Welding Deformation and Residual Stress Prevention, Elsevier, 2012.

  29. Wagner, G., Lin, S., and Liu,W.K., Multi-Scale Solidification Simulations of Additive Manufacturing Process in Metals, 14th U.S. National Congress on Computational Mechanics, 2017.

  30. Yuan, M. and Ueda, Y., Prediction of Residual Stresses in Welded T-and I-Joints using Inherent Strains, J. Eng. Mater. Technol., vol. 118, pp. 229–234, 1996.

  31. Zeng, K., Pal, D., and Stucker, B., A Review of Thermal Analysis Methods in Laser Sintering and Selective Laser Melting, Proc. Solid Freeform Fabrication Symp., Austin, TX, 2012.


Articles with similar content:

MULTIVARIATE ANALYSIS OF EXTRAPOLATING TIME-INVARIANT DATA WITH UNCERTAINTY
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 6
Die Joseph Hassan Millogo, Kuei-Yuan Chan
VALIDATION OF A PROBABILISTIC MODEL FOR MESOSCALE ELASTICITY TENSOR OF RANDOM POLYCRYSTALS
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 1
Arash Noshadravan, Roger Ghanem, Pedro Peralta, Johann Guilleminot, Ikshwaku Atodaria
IDENTIFICATION OF NONLINEAR THERMAL PROPERTIES BY AN OUTPUT LEAST SQUARE METHOD
International Heat Transfer Conference 8, Vol.4, 1986, issue
D. Delaunay, Y. Jarny , J. Bransier
TRANSIENT FEM SIMULATION OF 316L STAINLESS STEEL FABRICATED BY SELECTIVE LASER MELTING WITH DIFFERENT PROCESSING PARAMETERS.
4th Thermal and Fluids Engineering Conference, Vol.14, 2019, issue
Guoqiang Li, Stephen Akwaboa, Patrick Mensah, Emmanuel Duodu Amoako, Samuel Ibekwe
Study of Heat Transfer and Metallurgical Structure in the Continuous Casting of Aluminium and Aluminium Alloys
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1979, issue
L. Jovic, M. N. Novakovic, D. Spasojevic, V. Stefanovic