Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2015014280
pages 1-23

SPARSE GENERALIZED MULTISCALE FINITE ELEMENT METHODS AND THEIR APPLICATIONS

Eric T. Chung
Department of Mathematics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
Yalchin Efendiev
Department of Mathematics and Institute for Scientific Computation (ISC), Texas A&M University, College Station, TX 77840, USA; Multiscale Model Reduction Laboratory, North-Eastern Federal University, Yakutsk, Russia, 677980
Wing Tat Leung
Department of Mathematics and Institute for Scientific Computation (ISC), Texas A&M University, College Station, Texas 77843-3368, USA
Guanglian Li
Department of Mathematics & Institute for Scientific Computation (ISC), Texas A&M University, College Station, Texas, USA; Institute for Numerical Simulation, The University of Bonn, Wegelerstrasse 6,53115 Bonn, Germany

Краткое описание

In a number of previous papers, local (coarse grid) multiscale model reduction techniques are developed using a Generalized Multiscale Finite Element Method. In these approaches, multiscale basis functions are constructed using local snapshot spaces, where a snapshot space is a large space that represents the solution behavior in a coarse block. In a number of applications (e.g., those discussed in the paper), one may have a sparsity in the snapshot space for an appropriate choice of a snapshot space. More precisely, the solution may only involve a portion of the snapshot space. In this case, one can use sparsity techniques to identify multiscale basis functions. In this paper, we consider two such sparse local multiscale model reduction approaches. In the first approach (which is used for parameter-dependent multiscale PDEs), we use local minimization techniques, such as sparse POD, to identify multiscale basis functions, which are sparse in the snapshot space. These minimization techniques use l1 minimization to find local multiscale basis functions, which are further used for finding the solution. In the second approach (which is used for the Helmholtz equation), we directly apply l1 minimization techniques to solve the underlying PDEs. This approach is more expensive as it involves a large snapshot space; however, in this example, we cannot identify a local minimization principle, such as local generalized SVD. All our numerical results assume the sparsity and we discuss this assumption for the snapshot spaces. Moreover, we discuss the computational savings provided by our approach. The sparse solution allows a fast evaluation of stiffness matrices and downscaling the solution to the fine grid since the reduced dimensional solution representation is sparse in terms of local snapshot vectors. Numerical results are presented, which show the convergence of the proposed method and the sparsity of the solution.


Articles with similar content:

NONLINEAR NONLOCAL MULTICONTINUA UPSCALING FRAMEWORK AND ITS APPLICATIONS
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 5
Eric T. Chung, Yalchin Efendiev, Wing T. Leung, Mary Wheeler
Multiscale Discontinuous Galerkin and Operator-Splitting Methods for Modeling Subsurface Flow and Transport
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 1
Juergen Geiser, Shuyu Sun
DATA ASSIMILATION FOR NAVIER-STOKES USING THE LEAST-SQUARES FINITE-ELEMENT METHOD
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 5
Richard P. Dwight, Alexander Schwarz
REITERATED MULTISCALE MODEL REDUCTION USING THE GENERALIZED MULTISCALE FINITE ELEMENT METHOD
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 6
Wing Tat Leung, Maria Vasilyeva, Eric T. Chung, Yalchin Efendiev
POLYNOMIAL CHAOS FOR SEMIEXPLICIT DIFFERENTIAL ALGEBRAIC EQUATIONS OF INDEX 1
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 1
Roland Pulch