Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v1.i4.90
20 pages

Micromechanical Analyses of Saturated Granular Soils

Mourad Zeghal
Rensselaer Polytechnic Institute
U. El Shamy
Civil and Environmental Engineering Department Rensselaer Polytechnic Institute, Troy, NY 12180
Mark S. Shephard
Department of Mechanical and Aerospace Engineering, Rensselaer Polytechnic Institute Troy, NY, 12180, USA
R. Dobry
Civil and Environmental Engineering Department Rensselaer Polytechnic Institute, Troy, NY 12180
Jacob Fish
Civil Engineering and Engineering Mechanics, Columbia University, New York, New York 10027, USA
T. Abdoun
Civil and Environmental Engineering Department Rensselaer Polytechnic Institute, Troy, NY 12180

Краткое описание

Phenomenological (macroscale) models are commonly used in analyses of saturated soil systems. In these models, the momentum exchange between the solid and fluid phases is generally accounted for using Darcy's law. A hydromechanical model is presented herein to study the coupled mesoscale pore water flow and microscale solid matrix deformation of granular soils. The fluid motion is idealized using averaged Navier-Stokes equations, and the discrete element method is employed to model soil particles. Fluid-particle interactions are addressed using established semi-empirical relationships. The proposed approach was validated using published experimental results. Numerical simulations were conducted to investigate the liquefaction of soil deposits subjected to a critical hydraulic gradient. Pore water flow through a liquefied coarse sandy soil was shown to deviate from Darcy's law and eventually become locally nonlaminar. At steady state, the associated permeabilities were found to be comparable to those at subcritical conditions.