Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 18, 2020 Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2020033217
pages 493-505

RANDOM WALK-BASED STOCHASTIC MODELING OF DIFFUSION IN SPHERICAL AND ELLIPSOIDAL COMPOSITES

Jian Qiu
Department of Mechanical & Materials Engineering, University of Denver, Denver, Colorado 80208, USA
Jide Williams
Department of Mechanical & Materials Engineering, University of Denver, Denver, Colorado 80208, USA
Yun-Bo Yi
Department of Mechanical and Materials Engineering, University of Denver, Denver, Colorado 80208, USA

Краткое описание

Diffusion in randomly dispersed, spherical, and ellipsoidal composite systems is studied using the random walk simulations. The outcome of the computational analysis is validated by finite element analyses. A Monte Carlo scheme is applied to generate the particulate system. The composite is assumed to have a lower diffusivity in the inclusions and a higher diffusivity in the matrix. The effective diffusion coefficient is found to agree with the theory relating volume fractions of permeable and impermeable inclusions to the diffusion coefficient. The effect of the particle aspect ratio is investigated numerically and compared with the closed-form, effective medium solutions. In the case of ellipsoidal inclusions, it is found that the effective diffusion coefficient is strongly dependent on the particle aspect ratio and that it rapidly decreases with the volume fraction of inclusions. The interfacial effect in the setting of anomalous diffusion for permeable systems is also tentatively investigated.

ЛИТЕРАТУРА

  1. Anh, D.H.N., Blaudeck, P., Hoffmann, K.H., Prehl, J., and Tarafdar, S., Anomalous Diffusion on Random Fractal Composites, J. Phys. A: Math. Theor., vol. 40, p. 11453,2007.

  2. Belova, I.V. and Murch, G.E., The Effective Diffusivity in Polycrystalline Material in the Presence of Interphase Boundaries, Philos. Mag, vol. 84, pp. 17-28,2004.

  3. Bertin, E.M. and Bouchaud, J.P., Subdiffusion and Localization in the One-Dimensional Trap Model, Phys. Rev. E, vol. 67, p. 26128,2003.

  4. Chaudhuri, P., Gao, Y., Berthier, L., Kilfoil, M., and Kob, W., A Random Walk Description of the Heterogeneous Glassy Dynamics of Attracting Colloids, J. Phys.: Condens. Matter, vol. 20, p. 244126,2008.

  5. Cukier, R.I., Sheu, S.Y., and Tobochnik, J., Random-Walk Simulation of the Dielectric Constant of a Composite Material, Phys. Rev. B: Condens. Matter, vol. 42, pp. 5342-5344,1990.

  6. Duffy, K.J., Cummings, P.T., and Ford, R.M., Random Walk Calculations for Bacterial Migration in Porous Media, Biophys. J., vol. 68, pp. 800-806,1995.

  7. Dutta, T., Fractal Pore Structure of Sedimentary Rocks: Simulation by Ballistic Deposition, J. Geophys. Res., vol. 108(B2), p. 2062, 2003.

  8. Evans, W., Prasher, R., Fish, J., Meakin, P., Phelan, P., and Keblinski, P., Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids, Int. J. Heat Mass Transf, vol. 51, pp. 1431-1438,2008.

  9. Fang, Q. and Boas, D.A., Tetrahedral Mesh Generation from Volumetric Binary and Grayscale Images, Proc. 2009IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, pp. 1142-1145,2009.

  10. Gouyet, J.F., Rosso, M., and Sapoval, B., Fractal Structure of Diffusion and Invasion Fronts in Three-Dimensional Lattices through the Gradient Percolation Approach, Phys. Rev. B: Condens. Matter, vol. 37, pp. 1832-1838,1988.

  11. Guo, X., Yi, Y.B., and Kumosa, M.S., A Reduced Computational Model for Prediction of Electrical Resistance in Fibrous Composites, Int. J. Multiscale Comput. Eng., vol. 12, pp. 451-463,2014.

  12. Hashin, Z., Analysis of Composite-Materials - A Survey, J. Appl. Mech., vol. 50, pp. 481-505,1983.

  13. Hasselman, D.P.H. and Johnson, L.F., Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance, J. Compos. Mater., vol. 21, pp. 508-515,1987.

  14. Hou, T. Y. and Wu, X.H., A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, J. Comput. Phys, vol. 134, pp. 169-189,1997.

  15. Kalnin, J.R., Kotomin, E.A., and Maier, J., Calculations of the Effective Diffusion Coefficient for Inhomogeneous Media, J. Phys. Chem. Solids, vol. 63, pp. 449-456, 2002.

  16. Keffer, D.J., Edwards, B.J., and Adhangale, P., Determination of Statistically Reliable Transport Diffusivities from Molecular Dynamics Simulation, J. Non-Newtonian Fluid Mech., vol. 120, pp. 41-53,2004.

  17. Kerstein, A.R., Equivalence of the Void Percolation Problem for Overlapping Spheres and a Network Problem, J. Phys. A: Math. Gen, vol. 16, pp. 3071-3075,1983.

  18. Klemm, A., Kimmich, R., and Weber, M., Flow through Percolation Clusters: NMR Velocity Mapping and Numerical Simulation Study, Phys. Rev. E, vol. 63, no. 4 Part 1, p. 041514,2001.

  19. Knight, J.D., Lerner, M.G., Marcano-Velazquez, J.G., Pastor, R.W., and Falke, J.J., Single Molecule Diffusion of Membrane-Bound Proteins: Window into Lipid Contacts and Bilayer Dynamics, Biophys. J, vol. 99, pp. 2879-2887,2010.

  20. Lu, Y., A Combinatorial Approach for Automotive Friction Materials: Effects of Ingredients on Friction Performance, Compos. Sci. Technol., vol. 66, pp. 591-598,2006.

  21. Maxwell, J.C., A Treatise on Electricity and Magnetism, Oxford: Clarendon Press, 1873.

  22. McLlaughlin, R., A Study of the Differential Scheme for Composite-Materials, Int. J. Eng. Sci., vol. 15, pp. 237-244,1977.

  23. Miller, C.A., Kim, I.C., and Torquato, S., Trapping and Flow among Random Arrays of Oriented Spheroidal Inclusions, J. Chem. Phys, vol. 94, pp. 5592-5598,1991.

  24. Pietrak, K. andTomasz, S.W., A Review of Models for Effective Thermal Conductivity of Composite Materials, J. Power Technol, vol. 95, pp. 14-24,2015.

  25. Qiu, J., Yi, Y.B., and Guo, X., Computational Prediction of Electrical and Thermal Conductivities of Disklike Particulate Composites, Int. J. Comput. Mater. Sci. Surf. Eng., vol. 4, p. 1550013,2015.

  26. Ribeiro, H.V., Tateishi, A.A., Alves, L.G.A., Zola, R.S., and Lenzi, E.K., Investigating the Interplay between Mechanisms of Anomalous Diffusion via Fractional Brownian Walks on a Comb-Like Structure, New J. Phys, vol. 16, p. 093050,2014.

  27. Rintoul, M.D., Precise Determination of the Void Percolation Threshold for Two Distributions of Overlapping Spheres, Phys. Rev. E, vol. 62, pp. 68-72,2000.

  28. Sancho, J.M., Lacasta, A.M., Lindenberg, K., Sokolov, I.M., and Romero, A.H., Diffusion on a Solid Surface: Anomalous Is Normal, Phys. Rev. Lett., vol. 92, p. 250601,2004.

  29. Swartz, E.T. and Pohl, R.O., Thermal Boundary Resistance, Rev. of Mod. Phys, vol. 61, pp. 605-668,1989.

  30. Sykova, E. and Nicholson, C., Diffusion in Brain Extracellular Space, Physiol. Rrev., vol. 88, pp. 1277-1240,2008.

  31. Tawerghi, E. and Yi, Y.B., A Computational Study on the Effective Properties of Heterogeneous Random Media Containing Particulate Inclusions, J. Phys. D: Appl. Phys., vol. 42,2009.

  32. Tera, G., Ramstad, T., and Hansen, A., Anomalous Diffusion on Clusters in Steady-State Two-Phase Flow in Porous Media in Two Dimensions, Europhys. Lett., vol. 89, p. 59901,2010.

  33. Torquato, S., Random Heterogeneous Materials, New York: Springer-Verlag, Inc., 2002.

  34. Torquato, S., Kim, I.C., and Cule, D., Effective Conductivity, Dielectric Constant, and Diffusion Coefficient of Digitized Composite Media via First-Passage-Time Equations, J. Appl. Phys, vol. 85, pp. 1560-1571,1999.

  35. Trinh, S., Arce, P., and Locke, B.R., Effective Diffusivities of Point-Like Molecules in Isotropic Porous Media by Monte Carlo Simulation, Transp. Porous Media, vol. 38, pp. 241-259,2000.

  36. Zhang, Y. and Liu, L., On Diffusion in Heterogeneous Media, Am. J. Sci, vol. 312, pp. 1028-1047,2012.


Articles with similar content:

RANDOM WALK SIMULATION MODEL OF DIFFUSION IN CIRCULAR AND ELLIPTICAL PARTICULATE COMPOSITES
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 2
Jian Qiu, Yun-Bo Yi
Effect of Suspended Particles on the Onset of Thermal Convection in a Nanofluid Layer for More Realistic Boundary Conditions
International Journal of Fluid Mechanics Research, Vol.42, 2015, issue 5
Gian C. Rana, Ramesh Chand, Ahmed Kadhim Hussein
Matrix model of inhomogeneous medium with generalized birefringence
ICHMT DIGITAL LIBRARY ONLINE, Vol.14, 2007, issue
Konstantin E. Yushtin, Ranjan S. Muttiah, Viktor V. Yakubchak, Sergey N. Savenkov
MULTISCALE ANALYSIS OF ANISOTROPIC MATERIALS WITH HEXAGONAL MICROSTRUCTURE AS MICROPOLAR CONTINUA
International Journal for Multiscale Computational Engineering, Vol.18, 2020, issue 2
Nicholas Fantuzzi, Patrizia Trovalusci, R. Luciano
COMBINED RADIATION AND CONDUCTION IN PACKED SPHERES
International Heat Transfer Conference 5, Vol.1, 1974, issue
Chang-Lin Tien, C. K. Chan